|
import argparse |
|
import os |
|
|
|
import torch |
|
|
|
|
|
class BaseOptions(): |
|
def __init__(self): |
|
self.initialized = False |
|
|
|
def initialize(self, parser): |
|
parser.add_argument('--mode', default='binary') |
|
|
|
|
|
parser.add_argument('--rz_interp', default='bilinear') |
|
parser.add_argument('--blur_prob', type=float, default=0.5) |
|
parser.add_argument('--blur_sig', default='0.0,3.0') |
|
parser.add_argument('--jpg_prob', type=float, default=0.5) |
|
parser.add_argument('--jpg_method', default='cv2,pil') |
|
parser.add_argument('--jpg_qual', default='30,100') |
|
|
|
|
|
parser.add_argument('--data_label', default='train', help='label to decide whether train or validation dataset') |
|
parser.add_argument('--weight_decay', type=float, default=0.0, help='loss weight for l2 reg') |
|
|
|
parser.add_argument('--class_bal', action='store_true') |
|
parser.add_argument('--batch_size', type=int, default=16, help='input batch size') |
|
|
|
parser.add_argument('--loadSize', type=int, default=256, help='scale images to this size') |
|
parser.add_argument('--cropSize', type=int, default=224, help='then crop to this size') |
|
parser.add_argument('--gpu_ids', type=str, default='-1', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') |
|
|
|
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') |
|
parser.add_argument('--name', type=str, default='experiment', help='name of the experiment. It decides where to store samples and models') |
|
|
|
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') |
|
parser.add_argument('--resize_or_crop', type=str, default='scale_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop|none]') |
|
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') |
|
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]') |
|
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') |
|
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{loadSize}') |
|
self.initialized = True |
|
return parser |
|
|
|
def gather_options(self): |
|
|
|
if not self.initialized: |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser = self.initialize(parser) |
|
|
|
|
|
opt, _ = parser.parse_known_args() |
|
self.parser = parser |
|
|
|
return parser.parse_args() |
|
|
|
def print_options(self, opt): |
|
message = '' |
|
message += '----------------- Options ---------------\n' |
|
for k, v in sorted(vars(opt).items()): |
|
comment = '' |
|
default = self.parser.get_default(k) |
|
if v != default: |
|
comment = '\t[default: %s]' % str(default) |
|
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) |
|
message += '----------------- End -------------------' |
|
print(message) |
|
|
|
|
|
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
|
|
os.makedirs(expr_dir, exist_ok=True) |
|
file_name = os.path.join(expr_dir, 'opt.txt') |
|
with open(file_name, 'wt') as opt_file: |
|
opt_file.write(message) |
|
opt_file.write('\n') |
|
|
|
def parse(self, print_options=True): |
|
|
|
opt = self.gather_options() |
|
opt.isTrain = self.isTrain |
|
|
|
|
|
if opt.suffix: |
|
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' |
|
opt.name = opt.name + suffix |
|
|
|
if print_options: |
|
self.print_options(opt) |
|
|
|
|
|
str_ids = opt.gpu_ids.split(',') |
|
opt.gpu_ids = [] |
|
for str_id in str_ids: |
|
id = int(str_id) |
|
if id >= 0: |
|
opt.gpu_ids.append(id) |
|
if len(opt.gpu_ids) > 0: |
|
torch.cuda.set_device(opt.gpu_ids[0]) |
|
|
|
|
|
|
|
opt.rz_interp = opt.rz_interp.split(',') |
|
opt.blur_sig = [float(s) for s in opt.blur_sig.split(',')] |
|
opt.jpg_method = opt.jpg_method.split(',') |
|
opt.jpg_qual = [int(s) for s in opt.jpg_qual.split(',')] |
|
if len(opt.jpg_qual) == 2: |
|
opt.jpg_qual = list(range(opt.jpg_qual[0], opt.jpg_qual[1] + 1)) |
|
elif len(opt.jpg_qual) > 2: |
|
raise ValueError("Shouldn't have more than 2 values for --jpg_qual.") |
|
|
|
self.opt = opt |
|
return self.opt |
|
|