|
from .base_options import BaseOptions |
|
|
|
|
|
class TrainOptions(BaseOptions): |
|
def initialize(self, parser): |
|
parser = BaseOptions.initialize(self, parser) |
|
parser.add_argument('--earlystop_epoch', type=int, default=5) |
|
parser.add_argument('--data_aug', action='store_true', help='if specified, perform additional data augmentation (photometric, blurring, jpegging)') |
|
parser.add_argument('--optim', type=str, default='adam', help='optim to use [sgd, adam]') |
|
parser.add_argument('--new_optim', action='store_true', help='new optimizer instead of loading the optim state') |
|
parser.add_argument('--loss_freq', type=int, default=400, help='frequency of showing loss on tensorboard') |
|
parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') |
|
parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') |
|
parser.add_argument('--last_epoch', type=int, default=-1, help='starting epoch count for scheduler intialization') |
|
parser.add_argument('--train_split', type=str, default='train', help='train, val, test, etc') |
|
parser.add_argument('--val_split', type=str, default='val', help='train, val, test, etc') |
|
parser.add_argument('--niter', type=int, default=100, help='total epoches') |
|
parser.add_argument('--beta1', type=float, default=0.9, help='momentum term of adam') |
|
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate for adam') |
|
|
|
parser.add_argument('--real_list_path', default='/mnt/data2/group2024-lhj/t2v/data/train/true', help='path for the list of real video') |
|
parser.add_argument('--fake_list_path', default='/mnt/data2/group2024-lhj/t2v/data/train/fake', help='path for the list of fake video') |
|
|
|
self.isTrain = True |
|
return parser |
|
|