Spaces:
Runtime error
Runtime error
File size: 6,737 Bytes
a17d20c 9997754 a17d20c 9997754 78e77b2 a23c59a 9997754 a23c59a 9997754 a17d20c 9997754 a23c59a 9997754 a17d20c 6e9f327 a17d20c c6d948a a17d20c 9997754 a17d20c 1a6a022 a17d20c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import torch
from spectro import wav_bytes_from_spectrogram_image
from diffusers import StableDiffusionPipeline
from transformers import BlipForConditionalGeneration, BlipProcessor
from share_btn import community_icon_html, loading_icon_html, share_js
model_id = "riffusion/riffusion-model-v1"
blip_model_id = "Salesforce/blip-image-captioning-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_id, torch_dtype=torch.float16).to("cuda")
processor = BlipProcessor.from_pretrained(blip_model_id)
def predict(image):
inputs = processor(image, return_tensors="pt").to("cuda", torch.float16)
output_blip = blip_model.generate(**inputs)
prompt = processor.decode(output_blip[0], skip_special_tokens=True)
spec = pipe(prompt).images[0]
print(spec)
wav = wav_bytes_from_spectrogram_image(spec)
with open("output.wav", "wb") as f:
f.write(wav[0].getbuffer())
return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
title = """
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Riffusion real-time image-to-music generation
</h1>
</div>
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;">
Describe a musical prompt, generate music by getting a spectrogram image & sound.
</div>
"""
article = """
<p style="font-size: 0.8em;line-height: 1.2em;border: 1px solid #374151;border-radius: 8px;padding: 20px;">
About the model: Riffusion is a latent text-to-image diffusion model capable of generating spectrogram images given any text input. These spectrograms can be converted into audio clips.
<br />—
<br />The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint.
<br />—
<br />The model is intended for research purposes only. Possible research areas and tasks include
generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models.
</p>
<div class="footer">
<p>
<a href="https://huggingface.co/riffusion/riffusion-model-v1" target="_blank">Riffusion model</a> by Seth Forsgren and Hayk Martiros -
<a href="https://github.com/salesforce/BLIP" target="_blank"> BLIP Model </a> by Junnan Li et al. - Demo forked from 🤗 <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>'s demo
</p>
</div>
<p style="text-align: center;font-size: 94%">
Do you need faster results ? You can skip the queue by duplicating this space:
<span style="display: flex;align-items: center;justify-content: center;height: 30px;">
<a href="https://huggingface.co/fffiloni/spectrogram-to-music?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</span>
</p>
"""
css = '''
#col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
div#record_btn > .mt-6 {
margin-top: 0!important;
}
div#record_btn > .mt-6 button {
width: 100%;
height: 40px;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
# prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in")
image_input = gr.Image()
send_btn = gr.Button(value="Get a new spectrogram ! ", elem_id="submit-btn")
with gr.Column(elem_id="col-container-2"):
spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out")
sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
gr.HTML(article)
send_btn.click(predict, inputs=[image_input], outputs=[spectrogram_output, sound_output, share_button, community_icon, loading_icon])
share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=250).launch(debug=True)
|