File size: 7,584 Bytes
bc120ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Ye Liu. Licensed under the BSD 3-Clause License.

import math

import clip
import torch
import torch.nn as nn
import torch.nn.functional as F
from nncore.nn import MODELS, build_loss, build_model

from .generator import PointGenerator

_CLIP_ARCHS = {
    'ViT-B/32': (768, 512, 50),
    'ViT-B/16': (768, 512, 197),
    'ViT-L/14': (1024, 768, 50),
    'ViT-L/14-336px': (1024, 768, 577)
}


@MODELS.register()
class R2Tuning(nn.Module):

    def __init__(self,
                 arch='ViT-B/32',
                 init=True,
                 dims=256,
                 strides=(1, 2, 4, 8),
                 buffer_size=1024,
                 max_num_moment=50,
                 merge_cls_sal=True,
                 adapter_cfg=None,
                 pyramid_cfg=None,
                 pooling_cfg=None,
                 class_head_cfg=None,
                 coord_head_cfg=None,
                 loss_cfg=None):
        super(R2Tuning, self).__init__()

        if init:
            self.clip, _ = clip.load(arch, device='cpu')
            for param in self.clip.parameters():
                param.requires_grad = False

        self.cfg = _CLIP_ARCHS[arch]
        self.adapter = build_model(adapter_cfg, dims, self.cfg[:2])
        self.pyramid = build_model(pyramid_cfg, dims, strides)
        self.pooling = build_model(pooling_cfg, dims)

        self.class_head = build_model(class_head_cfg, dims, 1)
        self.coord_head = build_model(coord_head_cfg, dims, 2)

        self.generator = PointGenerator(strides, buffer_size)

        self.coef = nn.Parameter(torch.ones(len(strides)))
        self.loss = build_loss(loss_cfg)

        self.max_num_moment = max_num_moment
        self.merge_cls_sal = merge_cls_sal

    def train(self, mode=True):
        super(R2Tuning, self).train(mode=mode)
        if hasattr(self, 'clip'):
            self.clip.eval()

    @torch.no_grad
    def clip_video_tower(self, video):
        video = video.type(self.clip.dtype)
        video = self.clip.visual.conv1(video)
        video = video.reshape(video.size(0), video.size(1), -1).permute(0, 2, 1)
        c_emb = video.new_zeros(video.size(0), 1, video.size(-1))
        c_emb = self.clip.visual.class_embedding.to(video.dtype) + c_emb
        video = torch.cat((c_emb, video), dim=1)
        video = video + self.clip.visual.positional_embedding.to(video.dtype)
        video = self.clip.visual.ln_pre(video).permute(1, 0, 2)
        emb = [video]
        for blk in self.clip.visual.transformer.resblocks:
            emb.append(blk(emb[-1]))
        video = torch.stack([e.permute(1, 0, 2) for e in emb])
        return video

    @torch.no_grad
    def clip_query_tower(self, query):
        query = self.clip.token_embedding(query).type(self.clip.dtype)
        query = query + self.clip.positional_embedding.type(self.clip.dtype)
        query = query.permute(1, 0, 2)
        emb = [query]
        for blk in self.clip.transformer.resblocks:
            emb.append(blk(emb[-1]))
        query = torch.stack([e.permute(1, 0, 2) for e in emb])
        return query

    def forward(self, data, mode='test'):
        video, query = data['video'], data['query']

        if hasattr(self, 'clip'):
            video_msk = torch.where(video[:, :, 0].isfinite(), 1, 0)
            query_msk = torch.where(query == 0, 0, 1)

            video[~video.isfinite()] = 0

            (b, t), d = video.size()[:2], int(math.sqrt(video.size(2) / 3))
            video = video.view(b * t, 3, d, d)

            video_emb = self.clip_video_tower(video)
            query_emb = self.clip_query_tower(query)

            n, _, p, c = video_emb.size()
            video_emb = video_emb.view(n, b, t, p, c)
        else:
            video_msk = torch.where(video[:, :, 0].isfinite(), 1, 0)
            query_msk = torch.where(query[:, :, 0].isfinite(), 1, 0)

            video[~video.isfinite()] = 0
            query[~query.isfinite()] = 0

            (b, t), l = video.size()[:2], query.size(1)
            video = video.view(b, t, -1, self.cfg[2], self.cfg[0]).permute(2, 0, 1, 3, 4)
            query = query.view(b, l, -1, self.cfg[1]).permute(2, 0, 1, 3)

            video_emb = video.float()
            query_emb = query.float()

        # video_emb: N * B * T * P * C
        # query_emb: N * B * L * C

        video_emb, query_emb, coll_v, coll_q = self.adapter(video_emb, query_emb,
                                                            video_msk, query_msk)

        pymid, pymid_msk = self.pyramid(video_emb, video_msk, return_mask=mode != 'test')
        point = self.generator(pymid)

        with torch.autocast('cuda', enabled=False):
            video_emb = video_emb.float()
            query_emb = self.pooling(query_emb.float(), query_msk)

            out_class = [self.class_head(e.float()) for e in pymid]
            out_class = torch.cat(out_class, dim=1)

            if self.coord_head is not None:
                out_coord = [
                    self.coord_head(e.float()).exp() * self.coef[i]
                    for i, e in enumerate(pymid)
                ]
                out_coord = torch.cat(out_coord, dim=1)
            else:
                out_coord = None

            output = dict(_avg_factor=b)

            if mode != 'test':
                data['coll_v'] = [e.float() for e in coll_v]
                data['coll_q'] = [self.pooling(e.float(), query_msk) for e in coll_q]

                data['point'] = point
                data['video_emb'] = video_emb
                data['query_emb'] = query_emb
                data['video_msk'] = video_msk
                data['pymid_msk'] = pymid_msk
                data['out_class'] = out_class
                data['out_coord'] = out_coord

                output = self.loss(data, output)

            if mode != 'train':
                assert b == 1, 'batch size larger than 1 is not supported for inference'
                out_class = out_class.sigmoid()
                out_score = F.cosine_similarity(video_emb, query_emb, dim=-1)

                output['_out'] = dict(label=data.get('label', [None])[0])

                pyd_shape = [e.size(1) for e in pymid]
                pyd_class = out_class[0, :, 0].split(pyd_shape)

                saliency = []
                for shape, score in zip(pyd_shape, pyd_class):
                    if t >= shape:
                        score = score.repeat_interleave(int(t / shape))
                        postfix = score[-1:].repeat(t - score.size(0))
                        score = torch.cat((score, postfix))
                    else:
                        scale = int(shape / t)
                        score = F.max_pool1d(score.unsqueeze(0), scale, stride=scale)[0]
                    saliency.append(score)

                saliency = torch.stack(saliency).amax(dim=0)

                if self.merge_cls_sal:
                    saliency *= out_score[0]

                output['_out']['saliency'] = saliency

                if self.coord_head is not None:
                    boundary = out_coord[0]
                    boundary[:, 0] *= -1
                    boundary *= point[:, 3, None].repeat(1, 2)
                    boundary += point[:, 0, None].repeat(1, 2)
                    boundary /= data['fps'][0]
                    boundary = torch.cat((boundary, out_class[0]), dim=-1)

                    _, inds = out_class[0, :, 0].sort(descending=True)
                    boundary = boundary[inds[:self.max_num_moment]]

                    output['_out']['boundary'] = boundary

        return output