Use lineplot instead of plot
Browse files- app.py +12 -16
- requirements.txt +1 -1
app.py
CHANGED
@@ -7,8 +7,8 @@ import decord
|
|
7 |
import nncore
|
8 |
import torch
|
9 |
import gradio as gr
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
import numpy as np
|
|
|
12 |
import torchvision.transforms.functional as F
|
13 |
from decord import VideoReader
|
14 |
from nncore.engine import load_checkpoint
|
@@ -59,7 +59,7 @@ def init_model(config, checkpoint):
|
|
59 |
return model, cfg
|
60 |
|
61 |
|
62 |
-
def main(video, query, model, cfg
|
63 |
if len(query) == 0:
|
64 |
raise gr.Error('Text query can not be empty.')
|
65 |
|
@@ -81,33 +81,29 @@ def main(video, query, model, cfg, fig, ax):
|
|
81 |
|
82 |
hd = pred['_out']['saliency'].cpu()
|
83 |
hd = ((hd - hd.min()) / (hd.max() - hd.min())).tolist()
|
|
|
84 |
|
85 |
-
|
86 |
-
ax.plot(range(0, len(hd) * 2, 2), hd)
|
87 |
-
|
88 |
-
ax.set_xlabel('Time (s)', fontsize=15)
|
89 |
-
ax.set_ylabel('Saliency Score', fontsize=15)
|
90 |
-
|
91 |
-
ax.tick_params(labelsize=14)
|
92 |
-
|
93 |
-
return mr, fig
|
94 |
|
95 |
|
96 |
model, cfg = init_model(CONFIG, WEIGHT)
|
97 |
|
98 |
-
plt.tight_layout(rect=(0.02, 0.05, 0.95, 0.885))
|
99 |
-
fig, ax = plt.subplots(figsize=(10, 5.5))
|
100 |
-
|
101 |
demo = gr.Interface(
|
102 |
-
fn=partial(main, model=model, cfg=cfg
|
103 |
inputs=[gr.Video(label='Video'),
|
104 |
gr.Textbox(label='Text Query')],
|
105 |
outputs=[
|
106 |
gr.Dataframe(
|
107 |
headers=['Start Time', 'End Time', 'Score'], label='Moment Retrieval'),
|
108 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
109 |
],
|
110 |
allow_flagging='never',
|
111 |
title=TITLE,
|
112 |
description=DESCRIPTION)
|
|
|
113 |
demo.launch()
|
|
|
7 |
import nncore
|
8 |
import torch
|
9 |
import gradio as gr
|
|
|
10 |
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
import torchvision.transforms.functional as F
|
13 |
from decord import VideoReader
|
14 |
from nncore.engine import load_checkpoint
|
|
|
59 |
return model, cfg
|
60 |
|
61 |
|
62 |
+
def main(video, query, model, cfg):
|
63 |
if len(query) == 0:
|
64 |
raise gr.Error('Text query can not be empty.')
|
65 |
|
|
|
81 |
|
82 |
hd = pred['_out']['saliency'].cpu()
|
83 |
hd = ((hd - hd.min()) / (hd.max() - hd.min())).tolist()
|
84 |
+
hd = pd.DataFrame(dict(x=range(0, len(hd) * 2, 2), y=hd))
|
85 |
|
86 |
+
return mr, hd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
model, cfg = init_model(CONFIG, WEIGHT)
|
90 |
|
|
|
|
|
|
|
91 |
demo = gr.Interface(
|
92 |
+
fn=partial(main, model=model, cfg=cfg),
|
93 |
inputs=[gr.Video(label='Video'),
|
94 |
gr.Textbox(label='Text Query')],
|
95 |
outputs=[
|
96 |
gr.Dataframe(
|
97 |
headers=['Start Time', 'End Time', 'Score'], label='Moment Retrieval'),
|
98 |
+
gr.LinePlot(
|
99 |
+
x='x',
|
100 |
+
y='y',
|
101 |
+
x_title='Time (seconds)',
|
102 |
+
y_title='Saliency Score',
|
103 |
+
label='Highlight Detection')
|
104 |
],
|
105 |
allow_flagging='never',
|
106 |
title=TITLE,
|
107 |
description=DESCRIPTION)
|
108 |
+
|
109 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
git+https://github.com/openai/CLIP.git@a1d0717
|
2 |
decord==0.6.0
|
3 |
-
matplotlib==3.9.0
|
4 |
nncore==0.4.4
|
|
|
5 |
torch==2.2.1
|
6 |
torchvision==0.17.1
|
|
|
1 |
git+https://github.com/openai/CLIP.git@a1d0717
|
2 |
decord==0.6.0
|
|
|
3 |
nncore==0.4.4
|
4 |
+
pandas==2.2.2
|
5 |
torch==2.2.1
|
6 |
torchvision==0.17.1
|