Spaces:
Runtime error
Runtime error
Trying gradio again
Browse files
app.py
CHANGED
@@ -1,57 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
model_pipeline = pipeline(task="text-classification", model="bdsl/HanmunRoBERTa")
|
22 |
-
|
23 |
-
# Streamlit app layout
|
24 |
-
title = "HanmunRoBERTa Century Classifier"
|
25 |
-
st.set_page_config(page_title=title, page_icon="π")
|
26 |
-
st.title(title)
|
27 |
-
|
28 |
-
# Checkbox to remove punctuation
|
29 |
-
remove_punct = st.checkbox(label="Remove punctuation", value=True)
|
30 |
-
|
31 |
-
# Text area for user input
|
32 |
-
input_str = st.text_area("Input text", height=275)
|
33 |
-
|
34 |
-
# Remove punctuation if checkbox is selected
|
35 |
-
if remove_punct and input_str:
|
36 |
-
# Specify the characters to remove
|
37 |
-
characters_to_remove = "ββ‘()γγ:\"γΒ·, ?γ" + punctuation
|
38 |
-
translating = str.maketrans('', '', characters_to_remove)
|
39 |
-
input_str = input_str.translate(translating)
|
40 |
-
|
41 |
-
# Display the input text after processing
|
42 |
-
st.write("Processed input:", input_str)
|
43 |
-
|
44 |
-
# Predict and display the classification scores if input is provided
|
45 |
-
if st.button("Classify"):
|
46 |
-
if input_str:
|
47 |
-
predictions = model_pipeline(input_str)
|
48 |
-
|
49 |
-
# Prepare the data for plotting
|
50 |
-
labels = [prediction['label'] for prediction in predictions]
|
51 |
-
scores = [prediction['score'] for prediction in predictions]
|
52 |
-
data = pd.DataFrame({"Label": labels, "Score": scores})
|
53 |
-
|
54 |
-
# Displaying predictions as a bar chart
|
55 |
-
st.bar_chart(data.set_index('Label'))
|
56 |
else:
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
title = "RoBERTa"
|
4 |
+
|
5 |
+
description = "Gradio Demo for RoBERTa. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
6 |
+
|
7 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.11692' target='_blank'>RoBERTa: A Robustly Optimized BERT Pretraining Approach</a></p>"
|
8 |
+
|
9 |
+
examples = [
|
10 |
+
['The goal of life is <mask>.','roberta-base']
|
11 |
+
]
|
12 |
+
|
13 |
+
io1 = gr.Interface.load("huggingface/roberta-base")
|
14 |
+
|
15 |
+
io2 = gr.Interface.load("huggingface/roberta-large")
|
16 |
+
|
17 |
+
|
18 |
+
def inference(inputtext, model):
|
19 |
+
if model == "roberta-base":
|
20 |
+
outlabel = io1(inputtext)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
else:
|
22 |
+
outlabel = io2(inputtext)
|
23 |
+
return outlabel
|
24 |
+
|
25 |
+
|
26 |
+
gr.Interface(
|
27 |
+
inference,
|
28 |
+
[gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["roberta-base","roberta-large"], type="value", default="roberta-base", label="model")],
|
29 |
+
[gr.outputs.Label(label="Output")],
|
30 |
+
examples=examples,
|
31 |
+
article=article,
|
32 |
+
title=title,
|
33 |
+
description=description).launch(enable_queue=True)
|