""" HuggingFace Spaces that: - loads in HanmunRoBERTa model https://huggingface.co/bdsl/HanmunRoBERTa - optionally strips text of punctuation and unwanted charactesr - predicts century for the input text - Visualizes prediction scores for each century # https://huggingface.co/blog/streamlit-spaces # https://huggingface.co/docs/hub/en/spaces-sdks-streamlit """ import streamlit as st from transformers import pipeline from string import punctuation import pandas as pd from huggingface_hub import InferenceClient client = InferenceClient(model="bdsl/HanmunRoBERTa") # Load the pipeline with the HanmunRoBERTa model model_pipeline = pipeline(task="text-classification", model="bdsl/HanmunRoBERTa") # Streamlit app layout title = "HanmunRoBERTa Century Classifier" st.title(title) st.set_page_config(layout=layout, page_title=title, page_icon="๐Ÿ“š") # Checkbox to remove punctuation remove_punct = st.checkbox(label="Remove punctuation", value=True) # Text area for user input input_str = st.text_area("Input text", height=275) # Remove punctuation if checkbox is selected if remove_punct and input_str: # Specify the characters to remove characters_to_remove = "โ—‹โ–ก()ใ€”ใ€•:\"ใ€‚ยท, ?ใ†" + punctuation translating = str.maketrans('', '', characters_to_remove) input_str = input_str.translate(translating) # Display the input text after processing st.write("Processed input:", input_str) # Predict and display the classification scores if input is provided if st.button("Classify"): if input_str: predictions = model_pipeline(input_str) # Prepare the data for plotting labels = [prediction['label'] for prediction in predictions] scores = [prediction['score'] for prediction in predictions] data = pd.DataFrame({"Label": labels, "Score": scores}) # Displaying predictions as a bar chart st.bar_chart(data.set_index('Label')) else: st.write("Please enter some text to classify.")