""" HuggingFace Spaces that: - loads in HanmunRoBERTa model https://huggingface.co/bdsl/HanmunRoBERTa - optionally strips text of punctuation and unwanted charactesr - predicts century for the input text - Visualizes prediction scores for each century # https://huggingface.co/blog/streamlit-spaces # https://huggingface.co/docs/hub/en/spaces-sdks-streamlit """ import streamlit as st from transformers import pipeline from string import punctuation import pandas as pd import plotly.express as px import plotly.graph_objects as go colors = px.colors.qualitative.Plotly # from huggingface_hub import InferenceClient # client = InferenceClient(model="bdsl/HanmunRoBERTa") # Load the pipeline with the HanmunRoBERTa model model_pipeline = pipeline(task="text-classification", model="bdsl/HanmunRoBERTa") # Streamlit app layout title = "HanmunRoBERTa Century Classifier" st.set_page_config(page_title=title, page_icon="๐Ÿ“š") st.title(title) # Checkbox to remove punctuation remove_punct = st.checkbox(label="Remove punctuation", value=True) # Text area for user input input_str = st.text_area("Input text", height=275) # Remove punctuation if checkbox is selected if remove_punct and input_str: # Specify the characters to remove characters_to_remove = "โ—‹โ–ก()ใ€”ใ€•:\"ใ€‚ยท, ?ใ†" + punctuation translating = str.maketrans('', '', characters_to_remove) input_str = input_str.translate(translating) # Display the input text after processing st.write("Processed input:", input_str) # Predict and display the classification scores if input is provided if st.button("Classify"): if input_str: predictions = model_pipeline(input_str) data = pd.DataFrame(predictions) data=data.sort_values(by='score', ascending=True) data.label = data.label.astype(str) # Displaying predictions as a bar chart fig = go.Figure( go.Bar( x=data.score.values, y=[f'{i}th Century' for i in data.label.values], orientation='h', text=[f'{score:.3f}' for score in data['score'].values], # Format text with 2 decimal points textposition='outside', # Position the text outside the bars hoverinfo='text', # Use custom text for hover info hovertext=[f'{i}th Century
Score: {score:.3f}' for i, score in zip(data['label'], data['score'])], # Custom hover text marker=dict(color=[colors[i % len(colors)] for i in range(len(data))]), # Cycle through colors )) fig.update_traces(width=0.4) fig.update_layout( height=300, # Custom height xaxis_title='Score', yaxis_title='', title='Model predictions and scores', margin=dict(l=100, r=200, t=50, b=50), uniformtext_minsize=8, uniformtext_mode='hide', ) st.pyplot(fig=fig) else: st.write("Please enter some text to classify.")