Spaces:
Running
Running
File size: 8,414 Bytes
7d1962a ab13bd6 ef219f6 9aa8f5f 7a42d65 9aa8f5f 4d31b4c 7d1962a 4ecef00 74e1e8a 4ecef00 74e1e8a f1ada87 4ecef00 c63dc5b f85425d 4ecef00 3440524 4d31b4c 3440524 4d31b4c 1996a44 4d31b4c 3440524 4d31b4c 7a42d65 4d31b4c f5b207c ab13bd6 05eef7a ec98626 4d31b4c ec98626 ab13bd6 5fa64e4 5f7b1ee 9aa8f5f ab13bd6 4d31b4c ab13bd6 4d31b4c 9b61b41 4d31b4c 9b61b41 4d31b4c ab13bd6 ca877b2 ab13bd6 4d31b4c 7a42d65 05eef7a a0b0fa4 ab13bd6 ca877b2 7a42d65 f5b207c 7a42d65 9aa8f5f 4d31b4c 05eef7a 4d31b4c ab13bd6 05eef7a 4d31b4c ca877b2 4d31b4c ca877b2 ab13bd6 4d31b4c 7a42d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import gradio as gr
from transformers import AutoTokenizer
from pymongo import MongoClient
import openai
DB_NAME = os.getenv("MONGO_DBNAME", "taiwan-llm")
USER = os.getenv("MONGO_USER")
PASSWORD = os.getenv("MONGO_PASSWORD")
uri = f"mongodb+srv://{USER}:{PASSWORD}@{DB_NAME}.kvwjiok.mongodb.net/?retryWrites=true&w=majority"
mongo_client = MongoClient(uri)
db = mongo_client[DB_NAME]
conversations_collection = db['conversations']
DESCRIPTION = """
# Language Models for Taiwanese Culture
<p align="center">
✍️ <a href="https://twllm.com/" target="_blank">Online Demo</a>
•
✍️ <a href="https://arena.twllm.com/" target="_blank">TW Chatbot Arena</a>
•
🤗 <a href="https://huggingface.co/yentinglin" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/yentinglin56" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/pdf/2311.17487" target="_blank">[Paper]</a>
• 👨️ <a href="https://github.com/MiuLab/Taiwan-LLaMa/tree/main" target="_blank">Github Repo</a>
<br/><br/>
<img src="https://www.csie.ntu.edu.tw/~miulab/taiwan-llama/logo-v2.png" width="100"> <br/>
</p>
# 🌟 Checkout New [Taiwan-LLM UI](http://www.twllm.com) 🌟
Taiwan-LLaMa is a fine-tuned model specifically designed for traditional mandarin applications. It is built upon the LLaMa 2 architecture and includes a pretraining phase with over 5 billion tokens and fine-tuning with over 490k multi-turn conversational data in Traditional Mandarin.
## Key Features
1. **Traditional Mandarin Support**: The model is fine-tuned to understand and generate text in Traditional Mandarin, making it suitable for Taiwanese culture and related applications.
2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses.
3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture.
4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo.
## Model Versions
Different versions of Taiwan-LLaMa are available:
- **Taiwan-LLM v3.0 (This demo)**
- **Taiwan-LLM v2.0**
- **Taiwan-LLM v1.0**
The models can be accessed from the provided links in the Hugging Face repository.
Try out the demo to interact with Taiwan-LLaMa and experience its capabilities in handling Traditional Mandarin!
"""
LICENSE = """
## Licenses
- Code is licensed under Apache 2.0 License.
- Models are licensed under the LLAMA Community License.
- By using this model, you agree to the terms and conditions specified in the license.
- By using this demo, you agree to share your input utterances with us to improve the model.
## Acknowledgements
Taiwan-LLaMa project acknowledges the efforts of the [Meta LLaMa team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) in democratizing large language models.
"""
DEFAULT_SYSTEM_PROMPT = "你是人工智慧助理,以下是用戶和人工智能助理之間的對話。你要對用戶的問題提供有用、安全、詳細和禮貌的回答。"
endpoint_url = os.environ.get("ENDPOINT_URL", "http://127.0.0.1:8080")
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1536
max_prompt_length = 8192 - MAX_MAX_NEW_TOKENS - 10
openai.api_base = endpoint_url
model_name = "yentinglin/Llama-3-Taiwan-70B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot()
with gr.Row():
msg = gr.Textbox(
container=False,
show_label=False,
placeholder='Type a message...',
scale=10,
)
submit_button = gr.Button('Submit',
variant='primary',
scale=1,
min_width=0)
with gr.Row():
retry_button = gr.Button('🔄 Retry', variant='secondary')
undo_button = gr.Button('↩️ Undo', variant='secondary')
clear = gr.Button('🗑️ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
system_prompt = gr.Textbox(label='System prompt',
value=DEFAULT_SYSTEM_PROMPT,
lines=6)
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.3,
)
top_p = gr.Slider(
label='Top-p (nucleus sampling)',
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, max_new_tokens, temperature, top_p, system_prompt):
messages = [{"role": "system", "content": system_prompt}]
for user, bot in history:
if user is not None:
messages.append({"role": "user", "content": user})
if bot is not None:
messages.append({"role": "assistant", "content": bot})
history[-1][1] = ""
response = openai.ChatCompletion.create(
model=model_name,
messages=messages,
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
n=1,
stream=True,
stop=["<|eot_id|>"], # 添加停止標記
)
for chunk in response:
if 'choices' in chunk:
delta = chunk['choices'][0]['delta']
if 'content' in delta:
history[-1][1] += delta['content']
yield history
conversation_document = {
"model_name": model_name,
"history": history,
"system_prompt": system_prompt,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
}
conversations_collection.insert_one(conversation_document)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
system_prompt,
],
outputs=chatbot
)
submit_button.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
system_prompt,
],
outputs=chatbot
)
def delete_prev_fn(
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def display_input(message: str,
history: list[tuple[str, str]]) -> list[tuple[str, str]]:
history.append((message, ''))
return history
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=bot,
inputs=[
chatbot,
max_new_tokens,
temperature,
top_p,
system_prompt,
],
outputs=chatbot,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=msg,
api_name=False,
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
gr.Markdown(LICENSE)
demo.queue(max_size=128)
demo.launch(max_threads=10) |