Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding): | |
super(ConvBlock, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) | |
self.batchnorm = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
return self.relu(self.batchnorm(self.conv(x))) | |
class DeconvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding): | |
super(DeconvBlock, self).__init__() | |
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, output_padding) | |
self.batchnorm = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
return self.relu(self.batchnorm(self.deconv(x))) | |
class Autoencoder(nn.Module): | |
def __init__(self, feature_dim=32): | |
super(Autoencoder, self).__init__() | |
self.feature_dim = feature_dim | |
# エンコーダ | |
self.enc1 = ConvBlock(3, 16, 10, 1, 0) | |
self.enc2 = ConvBlock(16, 32, 10, 1, 0) | |
self.enc3 = ConvBlock(32, 64, 2, 2, 0) | |
self.enc4 = ConvBlock(64, 128, 2, 2, 0) | |
self.enc5 = ConvBlock(128, 256, 2, 2, 0) | |
# デコーダ | |
self.dec1 = DeconvBlock(256, 128, 2, 2, 0, 1) | |
self.dec2 = DeconvBlock(256, 64, 2, 2, 0, 1) # 128 + 128 | |
self.dec3 = DeconvBlock(128, 32, 2, 2, 0, 0) # 64 + 64 | |
self.dec4 = DeconvBlock(64, 16, 10, 1, 0, 0) # 32 + 32 | |
self.dec5 = DeconvBlock(32, self.feature_dim, 10, 1, 0, 0) | |
self.dec6 = nn.Conv2d(self.feature_dim, 32, 1, 1, 0) | |
self.dec7 = nn.Conv2d(32, 3, 1, 1, 0) | |
def forward(self, x): | |
# エンコーダ | |
enc1 = self.enc1(x) | |
enc2 = self.enc2(enc1) | |
enc3 = self.enc3(enc2) | |
enc4 = self.enc4(enc3) | |
enc5 = self.enc5(enc4) | |
# デコーダ | |
dec1 = self.dec1(enc5) | |
dec2 = self.dec2(torch.cat((dec1, enc4), 1)) | |
dec3 = self.dec3(torch.cat((dec2, enc3), 1)) | |
dec4 = self.dec4(torch.cat((dec3, enc2), 1)) | |
dec5 = self.dec5(torch.cat((dec4, enc1), 1)) | |
dec6 = self.dec6(dec5) | |
dec7 = self.dec7(dec6) | |
return dec5, dec7 | |