yeq6x's picture
gpu
c6793c3
raw
history blame
7.15 kB
import torch
from torch import Tensor, nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
class RandomAffineAndRetMat(torch.nn.Module):
def __init__(
self,
degrees,
translate=None,
scale=None,
shear=None,
interpolation=torchvision.transforms.InterpolationMode.NEAREST,
fill=0,
center=None,
):
super().__init__()
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.interpolation = interpolation
self.fill = fill
self.center = center
def forward(self, img):
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Affine transformed image.
"""
fill = self.fill
if isinstance(img, Tensor):
if isinstance(fill, (int, float)):
fill = [float(fill)] * transforms.functional.get_image_num_channels(img)
else:
fill = [float(f) for f in fill]
img_size = transforms.functional.get_image_size(img)
ret = transforms.RandomAffine.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
transformed_image = transforms.functional.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center)
affine_matrix = self.get_affine_matrix_from_params(ret)
return transformed_image, affine_matrix
def get_affine_matrix_from_params(self, params):
degrees, translate, scale, shear = params
degrees = torch.tensor(degrees)
shear = torch.tensor(shear)
# パラメータを変換行列に変換
rotation_matrix = torch.tensor([[torch.cos(torch.deg2rad(degrees)), -torch.sin(torch.deg2rad(degrees)), 0],
[torch.sin(torch.deg2rad(degrees)), torch.cos(torch.deg2rad(degrees)), 0],
[0, 0, 1]])
translation_matrix = torch.tensor([[1, 0, translate[0]],
[0, 1, translate[1]],
[0, 0, 1]]).to(torch.float32)
scaling_matrix = torch.tensor([[scale, 0, 0],
[0, scale, 0],
[0, 0, 1]])
shearing_matrix = torch.tensor([[1, -torch.tan(torch.deg2rad(shear[0])), 0],
[-torch.tan(torch.deg2rad(shear[1])), 1, 0],
[0, 0, 1]])
# 変換行列を合成
affine_matrix = translation_matrix.mm(rotation_matrix).mm(scaling_matrix).mm(shearing_matrix)
return affine_matrix
def norm_img(img):
return (img-img.min())/(img.max()-img.min())
def preprocess_uploaded_image(uploaded_image, image_size):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ndarrayの場合はPILイメージに変換
if type(uploaded_image) == np.ndarray:
uploaded_image = Image.fromarray(uploaded_image)
uploaded_image = uploaded_image.convert("RGB")
uploaded_image = uploaded_image.resize((image_size, image_size))
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
uploaded_image = torch.tensor(uploaded_image, dtype=torch.float32).unsqueeze(0).to(device)
return uploaded_image
def get_heatmaps(img, feature_map, source_num, x_coords, y_coords, uploaded_image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_size = img.size(2)
batch_size = feature_map.size(0)
feature_dim = feature_map.size(1)
target_num = batch_size - 1
x_coords = [x_coords] * batch_size
y_coords = [y_coords] * batch_size
vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords]
vector = vectors[source_num]
reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim)
batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size)
norm_batch_distance_map = 1 / torch.cosh(20 * (batch_distance_map - batch_distance_map.min()) / (batch_distance_map.max() - batch_distance_map.min())) ** 2
source_map = norm_batch_distance_map[source_num].detach().cpu()
target_map = norm_batch_distance_map[target_num].detach().cpu()
alpha = 0.7
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
blended_source = blended_source.detach().cpu()
blended_target = blended_target.detach().cpu()
return source_map, target_map, blended_source, blended_target
def get_mean_vector(feature_map, points):
keypoints_size = points.size(1)
mean_vector_list = []
for i in range(keypoints_size):
x_coords, y_coords = torch.round(points[:,i].t()).to(torch.long)
vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords] # 1次元ベクトルに合わせてサイズを調整
# mean_vector = vectors[0:10].mean(0) # 10個の特徴マップの平均ベクトルを取得
mean_vector = vectors.mean(0).detach().cpu().numpy()
mean_vector_list.append(mean_vector)
return mean_vector_list
def get_keypoint_heatmaps(feature_map, mean_vector_list, keypoints_size, imgs):
if len(feature_map.size()) == 3:
feature_map = feature_map.unsqueeze(0)
device = feature_map.device
batch_size = feature_map.size(0)
feature_dim = feature_map.size(1)
size = feature_map.size(2)
norm_batch_distance_map = torch.zeros(batch_size,size,size,device=device)
for i in range(keypoints_size):
vector = mean_vector_list[i]
reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim)
batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), size, size)
batch_distance_map = 1/torch.cosh( 40*(batch_distance_map-batch_distance_map.min())
/(batch_distance_map.max()-batch_distance_map.min()) )**2
# 正規化
m = batch_distance_map/batch_distance_map.max(1).values.max(1).values.unsqueeze(0).unsqueeze(0).repeat(112,112,1).permute(2,0,1)
norm_batch_distance_map += m
# 1以上を消す
norm_batch_distance_map = (-F.relu(-norm_batch_distance_map+1)+1)
keypoint_maps = norm_batch_distance_map.detach().cpu()
alpha = 0.8 # Transparency factor for the heatmap overlay
blended_tensors = (1 - alpha) * imgs + alpha * torch.cat(
(norm_batch_distance_map.unsqueeze(1), torch.zeros(batch_size,2,size,size,device=device)),
dim=1
)
blended_tensors = norm_img(blended_tensors).detach().cpu()
return keypoint_maps, blended_tensors