Spaces:
Running
on
Zero
Running
on
Zero
add description and examples
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -0
- app.py +50 -17
- resources/examples/2488.jpg +0 -0
- resources/examples/2899.jpg +0 -0
- resources/trainB/0000.jpg +0 -0
- resources/trainB/0001.jpg +0 -0
- resources/trainB/0002.jpg +0 -0
- resources/trainB/0003.jpg +0 -0
- resources/trainB/0004.jpg +0 -0
- resources/trainB/0005.jpg +0 -0
- resources/trainB/0006.jpg +0 -0
- resources/trainB/0007.jpg +0 -0
- resources/trainB/0008.jpg +0 -0
- resources/trainB/0009.jpg +0 -0
- resources/trainB/0010.jpg +0 -0
- resources/trainB/0011.jpg +0 -0
- resources/trainB/0012.jpg +0 -0
- resources/trainB/0013.jpg +0 -0
- resources/trainB/0014.jpg +0 -0
- resources/trainB/0015.jpg +0 -0
- resources/trainB/0016.jpg +0 -0
- resources/trainB/0017.jpg +0 -0
- resources/trainB/0018.jpg +0 -0
- resources/trainB/0019.jpg +0 -0
- resources/trainB/0020.jpg +0 -0
- resources/trainB/0021.jpg +0 -0
- resources/trainB/0022.jpg +0 -0
- resources/trainB/0023.jpg +0 -0
- resources/trainB/0024.jpg +0 -0
- resources/trainB/0025.jpg +0 -0
- resources/trainB/0026.jpg +0 -0
- resources/trainB/0027.jpg +0 -0
- resources/trainB/0028.jpg +0 -0
- resources/trainB/0029.jpg +0 -0
- resources/trainB/0030.jpg +0 -0
- resources/trainB/0031.jpg +0 -0
- resources/trainB/0032.jpg +0 -0
- resources/trainB/0033.jpg +0 -0
- resources/trainB/0034.jpg +0 -0
- resources/trainB/0035.jpg +0 -0
- resources/trainB/0036.jpg +0 -0
- resources/trainB/0037.jpg +0 -0
- resources/trainB/0038.jpg +0 -0
- resources/trainB/0039.jpg +0 -0
- resources/trainB/0040.jpg +0 -0
- resources/trainB/0041.jpg +0 -0
- resources/trainB/0042.jpg +0 -0
- resources/trainB/0043.jpg +0 -0
- resources/trainB/0044.jpg +0 -0
- resources/trainB/0045.jpg +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
from torch.utils.data import DataLoader
|
@@ -14,17 +14,17 @@ from io import BytesIO
|
|
14 |
|
15 |
# モデルとデータの読み込み
|
16 |
def load_model():
|
17 |
-
model_path = "checkpoints/
|
18 |
-
feature_dim =
|
19 |
model = AutoencoderModule(feature_dim=feature_dim)
|
20 |
state_dict = torch.load(model_path)
|
21 |
|
22 |
-
# state_dict のキーを修正
|
23 |
-
new_state_dict = {}
|
24 |
-
for key in state_dict:
|
25 |
-
|
26 |
-
|
27 |
-
model.load_state_dict(
|
28 |
model.eval()
|
29 |
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -58,7 +58,9 @@ x = load_data(device)
|
|
58 |
|
59 |
# アップロード画像の前処理
|
60 |
def preprocess_uploaded_image(uploaded_image, image_size):
|
61 |
-
|
|
|
|
|
62 |
uploaded_image = uploaded_image.convert("RGB")
|
63 |
uploaded_image = uploaded_image.resize((image_size, image_size))
|
64 |
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
|
@@ -66,8 +68,17 @@ def preprocess_uploaded_image(uploaded_image, image_size):
|
|
66 |
return uploaded_image
|
67 |
|
68 |
# ヒートマップの生成関数
|
69 |
-
@spaces.GPU
|
70 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with torch.no_grad():
|
72 |
dec5, _ = model(x)
|
73 |
img = x
|
@@ -101,7 +112,7 @@ def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
|
101 |
source_map = norm_batch_distance_map[source_num]
|
102 |
target_map = norm_batch_distance_map[target_num]
|
103 |
|
104 |
-
alpha = 0.
|
105 |
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
|
106 |
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
|
107 |
|
@@ -154,6 +165,7 @@ async () => {
|
|
154 |
console.log(files);
|
155 |
if (files && files.length > 0) {
|
156 |
console.log("File selected");
|
|
|
157 |
document.querySelector("#crop_view").style.display = "block";
|
158 |
document.querySelector("#crop_button").style.display = "block";
|
159 |
const url = URL.createObjectURL(files[0]);
|
@@ -183,6 +195,7 @@ async () => {
|
|
183 |
|
184 |
document.getElementById("crop_view").style.display = "none";
|
185 |
document.getElementById("crop_button").style.display = "none";
|
|
|
186 |
|
187 |
cropper.destroy();
|
188 |
}
|
@@ -194,6 +207,16 @@ async () => {
|
|
194 |
"""
|
195 |
|
196 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
with gr.Row():
|
198 |
with gr.Column():
|
199 |
source_num = gr.Slider(0, batch_size - 1, step=1, label="Source Image Index")
|
@@ -202,20 +225,30 @@ with gr.Blocks() as demo:
|
|
202 |
|
203 |
# GradioのFileコンポーネントでファイル選択ボタンを追加
|
204 |
gr.HTML('<input type="file" id="input_file" style="display:none;">')
|
205 |
-
input_file_button = gr.Button("
|
|
|
206 |
# 画像を表示するためのHTML画像タグをGradioで表示
|
207 |
gr.HTML('<img id="crop_view" style="max-width:100%;">')
|
208 |
# Gradioのボタンコンポーネントを追加し、IDを付与
|
209 |
-
crop_button = gr.Button("クロップ", elem_id="crop_button", variant="primary")
|
210 |
# クロップされた画像データのテキストボックス(Base64データ)
|
211 |
cropped_image_data = gr.Textbox(visible=False, elem_id="cropped_image_data")
|
212 |
-
input_image = gr.Image(label="Cropped Image",
|
213 |
# cropped_image_dataが更新されたらprocess_imageを呼び出す
|
214 |
cropped_image_data.change(process_image, inputs=cropped_image_data, outputs=input_image)
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
with gr.Column():
|
217 |
output_plot = gr.Plot()
|
218 |
|
|
|
219 |
# Gradioインターフェースの代わり
|
220 |
source_num.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
221 |
x_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
@@ -223,7 +256,7 @@ with gr.Blocks() as demo:
|
|
223 |
input_image.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
224 |
|
225 |
# JavaScriptコードをロード
|
226 |
-
demo.load(None, None, None, js=scripts)
|
227 |
-
|
228 |
demo.launch()
|
229 |
|
|
|
1 |
import gradio as gr
|
2 |
+
# import spaces
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
from torch.utils.data import DataLoader
|
|
|
14 |
|
15 |
# モデルとデータの読み込み
|
16 |
def load_model():
|
17 |
+
model_path = "checkpoints/autoencoder-epoch=49-train_loss=1.01.ckpt"
|
18 |
+
feature_dim = 64
|
19 |
model = AutoencoderModule(feature_dim=feature_dim)
|
20 |
state_dict = torch.load(model_path)
|
21 |
|
22 |
+
# # state_dict のキーを修正
|
23 |
+
# new_state_dict = {}
|
24 |
+
# for key in state_dict:
|
25 |
+
# new_key = "model." + key
|
26 |
+
# new_state_dict[new_key] = state_dict[key]
|
27 |
+
model.load_state_dict(state_dict['state_dict'])
|
28 |
model.eval()
|
29 |
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
58 |
|
59 |
# アップロード画像の前処理
|
60 |
def preprocess_uploaded_image(uploaded_image, image_size):
|
61 |
+
# ndarrayの場合はPILイメージに変換
|
62 |
+
if type(uploaded_image) == np.ndarray:
|
63 |
+
uploaded_image = Image.fromarray(uploaded_image)
|
64 |
uploaded_image = uploaded_image.convert("RGB")
|
65 |
uploaded_image = uploaded_image.resize((image_size, image_size))
|
66 |
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
|
|
|
68 |
return uploaded_image
|
69 |
|
70 |
# ヒートマップの生成関数
|
71 |
+
# @spaces.GPU
|
72 |
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
|
73 |
+
if type(uploaded_image) == str:
|
74 |
+
uploaded_image = Image.open(uploaded_image)
|
75 |
+
if type(source_num) == str:
|
76 |
+
source_num = int(source_num)
|
77 |
+
if type(x_coords) == str:
|
78 |
+
x_coords = int(x_coords)
|
79 |
+
if type(y_coords) == str:
|
80 |
+
y_coords = int(y_coords)
|
81 |
+
|
82 |
with torch.no_grad():
|
83 |
dec5, _ = model(x)
|
84 |
img = x
|
|
|
112 |
source_map = norm_batch_distance_map[source_num]
|
113 |
target_map = norm_batch_distance_map[target_num]
|
114 |
|
115 |
+
alpha = 0.7
|
116 |
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
|
117 |
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
|
118 |
|
|
|
165 |
console.log(files);
|
166 |
if (files && files.length > 0) {
|
167 |
console.log("File selected");
|
168 |
+
document.querySelector("#input_file_button").style.display = "none";
|
169 |
document.querySelector("#crop_view").style.display = "block";
|
170 |
document.querySelector("#crop_button").style.display = "block";
|
171 |
const url = URL.createObjectURL(files[0]);
|
|
|
195 |
|
196 |
document.getElementById("crop_view").style.display = "none";
|
197 |
document.getElementById("crop_button").style.display = "none";
|
198 |
+
document.querySelector("#input_file_button").style.display = "block";
|
199 |
|
200 |
cropper.destroy();
|
201 |
}
|
|
|
207 |
"""
|
208 |
|
209 |
with gr.Blocks() as demo:
|
210 |
+
# title
|
211 |
+
gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
|
212 |
+
# description
|
213 |
+
gr.Markdown("This demo visualizes the feature maps of a TripletGeoEncoder trained on the CelebA dataset using self-supervised learning without annotations from only 1000 images. "
|
214 |
+
"The feature maps are visualized as heatmaps, where the source map shows the distance of each pixel in the source image to the selected pixel, and the target map shows the distance of each pixel in the target image to the selected pixel. "
|
215 |
+
|
216 |
+
"The blended source and target images show the source and target images with the source and target maps overlaid, respectively. "
|
217 |
+
|
218 |
+
"For further information, please contact me on X (formerly Twitter): @Yeq6X.")
|
219 |
+
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
222 |
source_num = gr.Slider(0, batch_size - 1, step=1, label="Source Image Index")
|
|
|
225 |
|
226 |
# GradioのFileコンポーネントでファイル選択ボタンを追加
|
227 |
gr.HTML('<input type="file" id="input_file" style="display:none;">')
|
228 |
+
input_file_button = gr.Button("Upload Image and Crop", elem_id="input_file_button", variant="primary")
|
229 |
+
crop_button = gr.Button("Crop", elem_id="crop_button", variant="primary")
|
230 |
# 画像を表示するためのHTML画像タグをGradioで表示
|
231 |
gr.HTML('<img id="crop_view" style="max-width:100%;">')
|
232 |
# Gradioのボタンコンポーネントを追加し、IDを付与
|
|
|
233 |
# クロップされた画像データのテキストボックス(Base64データ)
|
234 |
cropped_image_data = gr.Textbox(visible=False, elem_id="cropped_image_data")
|
235 |
+
input_image = gr.Image(label="Cropped Image", elem_id="input_image")
|
236 |
# cropped_image_dataが更新されたらprocess_imageを呼び出す
|
237 |
cropped_image_data.change(process_image, inputs=cropped_image_data, outputs=input_image)
|
238 |
|
239 |
+
# examples
|
240 |
+
gr.Markdown("# Examples")
|
241 |
+
gr.Examples(
|
242 |
+
examples=[
|
243 |
+
["0", "50", "50", "resources/examples/2488.jpg"],
|
244 |
+
["0", "50", "50", "resources/examples/2899.jpg"]
|
245 |
+
],
|
246 |
+
inputs=[source_num, x_coords, y_coords, input_image],
|
247 |
+
)
|
248 |
with gr.Column():
|
249 |
output_plot = gr.Plot()
|
250 |
|
251 |
+
|
252 |
# Gradioインターフェースの代わり
|
253 |
source_num.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
254 |
x_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
|
|
256 |
input_image.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
|
257 |
|
258 |
# JavaScriptコードをロード
|
259 |
+
demo.load(None, None, None, js=scripts)
|
260 |
+
|
261 |
demo.launch()
|
262 |
|
resources/examples/2488.jpg
ADDED
resources/examples/2899.jpg
ADDED
resources/trainB/0000.jpg
ADDED
resources/trainB/0001.jpg
ADDED
resources/trainB/0002.jpg
ADDED
resources/trainB/0003.jpg
ADDED
resources/trainB/0004.jpg
ADDED
resources/trainB/0005.jpg
ADDED
resources/trainB/0006.jpg
ADDED
resources/trainB/0007.jpg
ADDED
resources/trainB/0008.jpg
ADDED
resources/trainB/0009.jpg
ADDED
resources/trainB/0010.jpg
ADDED
resources/trainB/0011.jpg
ADDED
resources/trainB/0012.jpg
ADDED
resources/trainB/0013.jpg
ADDED
resources/trainB/0014.jpg
ADDED
resources/trainB/0015.jpg
ADDED
resources/trainB/0016.jpg
ADDED
resources/trainB/0017.jpg
ADDED
resources/trainB/0018.jpg
ADDED
resources/trainB/0019.jpg
ADDED
resources/trainB/0020.jpg
ADDED
resources/trainB/0021.jpg
ADDED
resources/trainB/0022.jpg
ADDED
resources/trainB/0023.jpg
ADDED
resources/trainB/0024.jpg
ADDED
resources/trainB/0025.jpg
ADDED
resources/trainB/0026.jpg
ADDED
resources/trainB/0027.jpg
ADDED
resources/trainB/0028.jpg
ADDED
resources/trainB/0029.jpg
ADDED
resources/trainB/0030.jpg
ADDED
resources/trainB/0031.jpg
ADDED
resources/trainB/0032.jpg
ADDED
resources/trainB/0033.jpg
ADDED
resources/trainB/0034.jpg
ADDED
resources/trainB/0035.jpg
ADDED
resources/trainB/0036.jpg
ADDED
resources/trainB/0037.jpg
ADDED
resources/trainB/0038.jpg
ADDED
resources/trainB/0039.jpg
ADDED
resources/trainB/0040.jpg
ADDED
resources/trainB/0041.jpg
ADDED
resources/trainB/0042.jpg
ADDED
resources/trainB/0043.jpg
ADDED
resources/trainB/0044.jpg
ADDED
resources/trainB/0045.jpg
ADDED