import torch from torch import Tensor, nn import torch.nn.functional as F import torchvision from torchvision import transforms from PIL import Image import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA class RandomAffineAndRetMat(torch.nn.Module): def __init__( self, degrees, translate=None, scale=None, shear=None, interpolation=torchvision.transforms.InterpolationMode.NEAREST, fill=0, center=None, ): super().__init__() self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.interpolation = interpolation self.fill = fill self.center = center def forward(self, img): """ img (PIL Image or Tensor): Image to be transformed. Returns: PIL Image or Tensor: Affine transformed image. """ fill = self.fill if isinstance(img, Tensor): if isinstance(fill, (int, float)): fill = [float(fill)] * transforms.functional.get_image_num_channels(img) else: fill = [float(f) for f in fill] img_size = transforms.functional.get_image_size(img) ret = transforms.RandomAffine.get_params(self.degrees, self.translate, self.scale, self.shear, img_size) transformed_image = transforms.functional.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center) affine_matrix = self.get_affine_matrix_from_params(ret) return transformed_image, affine_matrix def get_affine_matrix_from_params(self, params): degrees, translate, scale, shear = params degrees = torch.tensor(degrees) shear = torch.tensor(shear) # パラメータを変換行列に変換 rotation_matrix = torch.tensor([[torch.cos(torch.deg2rad(degrees)), -torch.sin(torch.deg2rad(degrees)), 0], [torch.sin(torch.deg2rad(degrees)), torch.cos(torch.deg2rad(degrees)), 0], [0, 0, 1]]) translation_matrix = torch.tensor([[1, 0, translate[0]], [0, 1, translate[1]], [0, 0, 1]]).to(torch.float32) scaling_matrix = torch.tensor([[scale, 0, 0], [0, scale, 0], [0, 0, 1]]) shearing_matrix = torch.tensor([[1, -torch.tan(torch.deg2rad(shear[0])), 0], [-torch.tan(torch.deg2rad(shear[1])), 1, 0], [0, 0, 1]]) # 変換行列を合成 affine_matrix = translation_matrix.mm(rotation_matrix).mm(scaling_matrix).mm(shearing_matrix) return affine_matrix class GetTransformedCoords(nn.Module): def __init__(self, affine_matrix, center): super().__init__() self.affine_matrix = affine_matrix self.center = center def forward(self, _coords): # coords: like tensor([[43, 26], [44, 27], [45, 28]]) center_x, center_y = self.center # 元の座標を中心原点にシフト coords = _coords.clone() coords[:, 0] -= center_x coords[:, 1] -= center_y # 各バッチに対して変換を行う homogeneous_coordinates = torch.cat([coords, torch.ones(coords.shape[0], 1, dtype=torch.float32, device=coords.device)], dim=1) transformed_coordinates = torch.bmm(self.affine_matrix, homogeneous_coordinates.unsqueeze(-1)).squeeze(-1) # 画像の範囲内に収める # transformed_x = max(0, min(width - 1, transformed_coordinates[:, 0])) # transformed_y = max(0, min(height - 1, transformed_coordinates[:, 1])) transformed_x = transformed_coordinates[:, 0] transformed_y = transformed_coordinates[:, 1] transformed_x += center_x transformed_y += center_y return torch.stack([transformed_x, transformed_y]).t().to(torch.long) # ルートを取らないpairwise_distanceのバージョン def pairwise_distance_squared(a, b): return torch.sum((a - b) ** 2, dim=-1) def cosine_similarity(a, b): # ベクトルaとbの内積を計算 dot_product = torch.matmul(a, b) # ベクトルaとbのノルム(大きさ)を計算 norm_a = torch.sqrt(torch.sum(a ** 2, dim=-1)) norm_b = torch.sqrt(torch.sum(b ** 2, dim=-1)) # コサイン類似度を計算(内積をノルムの積で割る) return dot_product / (norm_a * norm_b) def batch_cosine_similarity(a, b): # ベクトルaとbの内積を計算 dot_product = torch.einsum('bnd,bnd->bn', a, b) # ベクトルaとbのノルム(大きさ)を計算 norm_a = torch.sqrt(torch.sum(a ** 2, dim=-1)) norm_b = torch.sqrt(torch.sum(b ** 2, dim=-1)) # コサイン類似度を計算(内積をノルムの積で割る) return dot_product / (norm_a * norm_b) class TripletLossBatch(nn.Module): def __init__(self): super(TripletLossBatch, self).__init__() def forward(self, anchor, positive, negative, margin=1.0): distance_positive = F.pairwise_distance(anchor, positive, p=2) distance_negative = F.pairwise_distance(anchor, negative, p=2) losses = torch.relu(distance_positive - distance_negative + margin) return losses.mean() class TripletLossCosineSimilarity(nn.Module): def __init__(self): super(TripletLossCosineSimilarity, self).__init__() def forward(self, anchor, positive, negative, margin=1.0): distance_positive = 1 - batch_cosine_similarity(anchor, positive) distance_negative = 1 - batch_cosine_similarity(anchor, negative) losses = torch.relu(distance_positive - distance_negative + margin) return losses.mean() def imsave(img): img = torchvision.utils.make_grid(img) img = img / 2 + 0.5 npimg = img.detach().cpu().numpy() # plt.imshow(np.transpose(npimg, (1, 2, 0))) # plt.show() # save image npimg = np.transpose(npimg, (1, 2, 0)) npimg = npimg * 255 npimg = npimg.astype(np.uint8) Image.fromarray(npimg).save('sample.png') def norm_img(img): return (img-img.min())/(img.max()-img.min()) def norm_img2(img): return (img-img.min())/(img.max()-img.min())*255 class DistanceMapLogger: def __call__(self, img, feature_map, save_path, x_coords=None, y_coords=None): device = feature_map.device batch_size = feature_map.size(0) feature_dim = feature_map.size(1) image_size = feature_map.size(2) if x_coords is None: x_coords = [69]*batch_size if y_coords is None: y_coords = [42]*batch_size # PCAで3次元のマップを抽出 pca = PCA(n_components=3) pca_result = pca.fit_transform(feature_map.permute(0,2,3,1).reshape(-1,feature_dim).detach().cpu().numpy()) # PCA を実行 reshaped_pca_result = pca_result.reshape(batch_size,image_size,image_size,3) # 3次元に変換(元は1次元) sample_num = 0 vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords] # 1次元ベクトルに合わせてサイズを調整 vector = vectors[sample_num] # バッチ内の各特徴マップに対して内積を計算 # feature_mapの次元を並べ替えてバッチと高さ・幅を平坦化 reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim) batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size) # batch_distance_map = F.cosine_similarity(reshaped_feature_map, vector.unsqueeze(0).unsqueeze(0).expand(65,size*size,32), dim=2).permute(1, 0).reshape(feature_map.size(0), size, size) norm_batch_distance_map = 1/torch.cosh( 20*(batch_distance_map-batch_distance_map.min())/(batch_distance_map.max()-batch_distance_map.min()) )**2 # norm_batch_distance_map[:,0,0] = 0.001 # 可視化と保存 fig, axes = plt.subplots(5, 4, figsize=(20, 25)) for ax in axes.flatten(): ax.axis('off') # 余白をなくす plt.subplots_adjust(wspace=0, hspace=0) # 外の余白もなくす plt.subplots_adjust(left=0, right=1, bottom=0, top=1) # 距離マップの可視化 for i in range(5): axes[i, 0].imshow(norm_batch_distance_map[i].detach().cpu(), cmap='hot') if i == sample_num: axes[i, 0].scatter(x_coords[i], y_coords[i], c='b', s=7) distance_map = torch.cat(((norm_batch_distance_map[i]/norm_batch_distance_map[i].max()).unsqueeze(0),torch.zeros(2,image_size,image_size,device=device))) alpha = 0.9 # Transparency factor for the heatmap overlay blended_tensor = (1 - alpha) * img[i] + alpha * distance_map axes[i, 1].imshow(norm_img(blended_tensor.permute(1,2,0).detach().cpu())) axes[i, 2].imshow(norm_img(img[i].permute(1,2,0).detach().cpu())) axes[i, 3].imshow(norm_img(reshaped_pca_result[i])) plt.savefig(save_path) def get_heatmaps(self, img, feature_map, source_num=0, target_num=1, x_coords=69, y_coords=42): device = feature_map.device batch_size = feature_map.size(0) feature_dim = feature_map.size(1) image_size = feature_map.size(2) x_coords = [x_coords]*batch_size y_coords = [y_coords]*batch_size vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords] # 1次元ベクトルに合わせてサイズを調整 vector = vectors[source_num] # バッチ内の各特徴マップに対して内積を計算 # feature_mapの次元を並べ替えてバッチと高さ・幅を平坦化 reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim) batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size) # batch_distance_map = F.cosine_similarity(reshaped_feature_map, vector.unsqueeze(0).unsqueeze(0).expand(65,size*size,32), dim=2).permute(1, 0).reshape(feature_map.size(0), size, size) norm_batch_distance_map = 1/torch.cosh( 20*(batch_distance_map-batch_distance_map.min())/(batch_distance_map.max()-batch_distance_map.min()) )**2 # norm_batch_distance_map[:,0,0] = 0.001 source_map = norm_batch_distance_map[source_num] target_map = norm_batch_distance_map[target_num] alpha = 0.9 blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num]/norm_batch_distance_map[source_num].max()).unsqueeze(0),torch.zeros(2,image_size,image_size,device=device))) blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num]/norm_batch_distance_map[target_num].max()).unsqueeze(0),torch.zeros(2,image_size,image_size,device=device))) return source_map, target_map, blended_source, blended_target