import torch from torch import nn class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding): super(ConvBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.batchnorm = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): return self.relu(self.batchnorm(self.conv(x))) class DeconvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding): super(DeconvBlock, self).__init__() self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, output_padding) self.batchnorm = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x): return self.relu(self.batchnorm(self.deconv(x))) class Autoencoder(nn.Module): def __init__(self, feature_dim=32): super(Autoencoder, self).__init__() self.feature_dim = feature_dim # エンコーダ self.enc1 = ConvBlock(3, 16, 10, 1, 0) self.enc2 = ConvBlock(16, 32, 10, 1, 0) self.enc3 = ConvBlock(32, 64, 2, 2, 0) self.enc4 = ConvBlock(64, 128, 2, 2, 0) self.enc5 = ConvBlock(128, 256, 2, 2, 0) # デコーダ self.dec1 = DeconvBlock(256, 128, 2, 2, 0, 1) self.dec2 = DeconvBlock(256, 64, 2, 2, 0, 1) # 128 + 128 self.dec3 = DeconvBlock(128, 32, 2, 2, 0, 0) # 64 + 64 self.dec4 = DeconvBlock(64, 16, 10, 1, 0, 0) # 32 + 32 self.dec5 = DeconvBlock(32, self.feature_dim, 10, 1, 0, 0) self.dec6 = nn.Conv2d(self.feature_dim, 32, 1, 1, 0) self.dec7 = nn.Conv2d(32, 3, 1, 1, 0) def forward(self, x): # エンコーダ enc1 = self.enc1(x) enc2 = self.enc2(enc1) enc3 = self.enc3(enc2) enc4 = self.enc4(enc3) enc5 = self.enc5(enc4) # デコーダ dec1 = self.dec1(enc5) dec2 = self.dec2(torch.cat((dec1, enc4), 1)) dec3 = self.dec3(torch.cat((dec2, enc3), 1)) dec4 = self.dec4(torch.cat((dec3, enc2), 1)) dec5 = self.dec5(torch.cat((dec4, enc1), 1)) dec6 = self.dec6(dec5) dec7 = self.dec7(dec6) return dec5, dec7