Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,855 Bytes
7931de6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import pathlib
import subprocess
import tempfile
import av
import numpy as np
from PIL import Image
def alpha_crop_detect(path):
result = subprocess.check_output(
[
"bash",
"-c",
f"""ffmpeg -c:v libvpx -i {path} -filter_complex "[0:v]alphaextract, cropdetect=limit=0:round=16:reset=0" -f null - 2>&1 | grep -oP 'crop=\K\d+:\d+:\d+:\d+' """,
]
)
return result.decode().strip().split("\n")[-1]
def crop_resize_overlay(
path, background_path, range, out, left=0.5, top=0.15, height=0.85, crf=17
):
with av.open(path, "r") as f:
fps = f.streams.video[0].base_rate
with av.open(background_path, "r") as f:
background_width, background_height = (
f.streams.video[0].width,
f.streams.video[0].height,
)
if isinstance(top, float):
top = int(background_height * top)
if isinstance(height, float):
height = int(background_height * height)
height -= height % 2
w, h, _, _ = map(int, range.split(":"))
width = int(height / h * w)
width -= width % 2
if isinstance(left, float):
left = int(background_width * left) - width // 2
subprocess.call(
[
"bash",
"-c",
f"""ffmpeg -y -c:v libvpx -r {fps} -i {path} -r {fps} -i {background_path} -filter_complex "[0:v]crop={range},scale={width}:{height} [vidi]; [1:v][vidi] overlay={left}:{top}" -crf {crf} -pix_fmt yuva420p -c:v libvpx-vp9 -c:a copy {out}""",
]
)
return background_width, background_height, int(fps), (left, top, height)
import json
import os
import shutil
import tempfile
from pathlib import Path
import av
import pandas as pd
import stf_alternative
from stf_alternative.util import get_crop_mp4_dir, get_frame_dir, get_preprocess_dir
from stf_tools.silent import create_silent_video
from stf_tools.writers import WebmWriter
def create_template(
template_video_path,
background_path,
out_path,
config_path,
reference_face,
work_root_path,
checkpoint_path,
left,
top,
height,
crf=17,
):
crop_range = alpha_crop_detect(template_video_path)
result_width, result_height, fps, (left, top, height) = crop_resize_overlay(
template_video_path,
background_path,
crop_range,
out_path,
left=left,
top=top,
height=height,
crf=crf,
)
stf_alternative.preprocess_template(
config_path=config_path,
template_video_path=template_video_path,
reference_face=reference_face,
work_root_path=work_root_path,
template_frame_ratio=1.0,
template_video_ratio=[1.0],
silent_video_path=None,
callback=None,
device="cuda:0",
verbose=True,
save_frames=False,
)
model = stf_alternative.create_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
work_root_path=work_root_path,
device="cuda:0",
verbose=True,
wavlm_path="microsoft/wavlm-large",
)
preprocess_dir = Path(get_preprocess_dir(work_root_path, model.args.name))
crop_mp4_dir = Path(get_crop_mp4_dir(preprocess_dir, template_video_path))
dataset_dir = crop_mp4_dir / f"{Path(template_video_path).stem}_000"
template_frames_path = Path(
get_frame_dir(preprocess_dir, template_video_path, ratio=1.0)
)
with open(preprocess_dir / "metadata.json", "w") as f:
json.dump(
{
"fps": fps,
"width": result_width,
"height": result_height,
},
f,
)
df = pd.read_pickle(dataset_dir / "df_fan.pickle")
w, h, x, y = map(int, crop_range.split(":"))
scale = height / h
id_set = set()
for it in df["cropped_box"]:
if id(it) in id_set:
continue
id_set.add(id(it))
x1, y1, x2, y2 = it
x1 = (x1 - x) * scale + left
x2 = (x2 - x) * scale + left
y1 = (y1 - y) * scale + top
y2 = (y2 - y) * scale + top
it[:] = (x1, y1, x2, y2)
df.to_pickle(dataset_dir / "df_fan.pickle")
template_frames_path.mkdir(exist_ok=True, parents=True)
with av.open(out_path) as container:
for frame in container.decode(video=0):
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save(
f"{template_frames_path}/%05d.webp" % frame.index,
format="webp",
lossless=True,
)
with tempfile.TemporaryDirectory() as tempdir:
silent_video_path = f"{tempdir}/silent.webm"
template = stf_alternative.Template(
config_path=config_path,
model=model,
template_video_path=template_video_path,
wav_std=False,
ref_wav=None,
verbose=True,
)
writer = WebmWriter(
silent_video_path,
width=result_width,
height=result_height,
fps=fps,
crf=crf,
audio_sample_rate=16000,
quiet=False,
)
create_silent_video(template, writer)
silent_frames_path = Path(
get_frame_dir(preprocess_dir, silent_video_path, ratio=1.0)
)
silent_frames_path.mkdir(exist_ok=True, parents=True)
with av.open(silent_video_path) as container:
for frame in container.decode(video=0):
Image.fromarray(frame.to_ndarray(format="rgb24"), mode="RGB").save(
f"{silent_frames_path}/%05d.webp" % frame.index,
format="webp",
lossless=True,
)
shutil.rmtree(template_frames_path, ignore_errors=False)
silent_frames_path.rename(template_frames_path)
|