File size: 4,260 Bytes
8353bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0abe82
 
 
 
 
 
8353bee
d0abe82
 
 
 
 
 
 
6642cf6
8353bee
d0abe82
 
8353bee
 
 
d0abe82
 
 
 
 
 
8353bee
 
d0abe82
8353bee
0eecd0c
d0abe82
74f6e9a
d0abe82
 
 
 
8353bee
d0abe82
 
 
 
8353bee
d0abe82
8353bee
d0abe82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8353bee
d0abe82
 
8353bee
d0abe82
 
 
 
 
5c0fe17
d0abe82
 
8353bee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt = prompt, 
            width = width,
            height = height,
            num_inference_steps = num_inference_steps, 
            generator = generator,
            guidance_scale=0.0
    ).images[0] 
    return image, seed
 

def create_flux_tab(image_input):
    examples = [
        "a tiny astronaut hatching from an egg on the moon",
        "a cat holding a sign that says hello world",
        "an anime illustration of a wiener schnitzel",
    ]
    
    css="""
    #col-container {
        margin: 0 auto;
        max-width: 520px;
    }
    """
    
    with gr.Blocks(css=css) as flux_demo:
        
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""# FLUX.1 [schnell]""")
            
            with gr.Row():
                
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                
                run_button = gr.Button("Run", scale=0)
            
            result = gr.Image(label="Result", show_label=False)

            with gr.Row():
                use_in_text2lipsync_button = gr.Button("이 이미지를 Txt to Lipsync 탭에서 사용하기")  # 새로운 버튼 추가
            
            
            with gr.Accordion("Advanced Settings", open=False):
                
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                with gr.Row():
                    
      
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=4,
                    )
            
            gr.Examples(
                examples = examples,
                fn = infer,
                inputs = [prompt],
                outputs = [result, seed],
                cache_examples="lazy"
            )
    
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn = infer,
            inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs = [result, seed]
        )
        # 새로운 버튼 클릭 이벤트 정의
        use_in_text2lipsync_button.click(
            fn=lambda img: img,  # 간단한 람다 함수를 사용하여 이미지를 그대로 전달
            inputs=[result],  # 생성된 이미지를 입력으로 사용
            outputs=[image_input]  # Text to LipSync 탭의 image_input을 업데이트
        )
        
    return flux_demo

# demo.launch()