File size: 10,128 Bytes
fc39e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabe886
 
 
 
89892f2
637f73a
dabe886
fc39e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabe886
 
 
 
 
 
 
 
 
 
fc39e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabe886
 
 
 
 
40667cc
fc39e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabe886
 
 
 
 
40667cc
dabe886
 
 
 
 
fc39e7c
 
 
 
 
 
 
 
 
 
637f73a
 
 
362f999
fc39e7c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding: utf-8

"""
The entrance of the gradio
"""

import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
import spaces
import cv2


#추가
from elevenlabs_utils import ElevenLabsPipeline
from setup_environment import initialize_environment
from src.utils.video import extract_audio
from flux_dev import create_flux_tab

# import gdown
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib"
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False)


# import sys
# sys.path.append('/home/user/.local/lib/python3.10/site-packages')
# sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative')
# sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools')
# sys.path.append('/home/user/app/')
# sys.path.append('/home/user/app/stf/')
# sys.path.append('/home/user/app/stf/stf_alternative/')
# sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative')
# sys.path.append('/home/user/app/stf/stf_tools')
# sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools')



# # CUDA 경로를 환경 변수로 설정
# os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '')
# os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
# # 확인용 출력
# print("PATH:", os.environ['PATH'])
# print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH'])

# from stf_utils import STFPipeline


def partial_fields(target_class, kwargs):
    return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})

# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)

# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__)  # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__)  # use attribute of args to initial CropConfig

gradio_pipeline = GradioPipeline(
    inference_cfg=inference_cfg,
    crop_cfg=crop_cfg,
    args=args
)

# 추가 정의
elevenlabs_pipeline = ElevenLabsPipeline()

@spaces.GPU(duration=200)
def gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice):
    return elevenlabs_pipeline.generate_voice(text, voice)


    

@spaces.GPU(duration=240)
def gpu_wrapped_execute_video(*args, **kwargs):
    return gradio_pipeline.execute_video(*args, **kwargs)

@spaces.GPU(duration=240)
def gpu_wrapped_execute_image(*args, **kwargs):
    return gradio_pipeline.execute_image(*args, **kwargs)

def is_square_video(video_path):
    video = cv2.VideoCapture(video_path)

    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

    video.release()
    if width != height:
        raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos")

    return gr.update(visible=True)

# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
    [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
    [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
    [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
    [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True],
    [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True],
    [osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
]
#################### interface logic ####################

# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    #gr.HTML(load_description(title_md))

    with gr.Tabs():
        with gr.Tab("Text to LipSync"):
            gr.Markdown("# Text to LipSync")
            with gr.Row():
                with gr.Column():
                    script_txt = gr.Text()
                with gr.Column():
                    audio_gen_button = gr.Button("Audio generation", variant="primary")
            with gr.Row():
                    output_audio_path = gr.Audio(label="Generated audio", type="filepath")
                
            gr.Markdown(load_description("assets/gradio_description_upload.md"))
            with gr.Row():
                with gr.Accordion(open=True, label="Source Portrait"):
                    image_input = gr.Image(type="filepath")
                    gr.Examples(
                        examples=[
                            [osp.join(example_portrait_dir, "s9.jpg")],
                            [osp.join(example_portrait_dir, "s6.jpg")],
                            [osp.join(example_portrait_dir, "s10.jpg")],
                            [osp.join(example_portrait_dir, "s5.jpg")],
                            [osp.join(example_portrait_dir, "s7.jpg")],
                            [osp.join(example_portrait_dir, "s12.jpg")],
                            [osp.join(example_portrait_dir, "s22.jpg")],
                        ],
                        inputs=[image_input],
                        cache_examples=False,
                    )
                with gr.Accordion(open=True, label="Driving Video"):
                    video_input = gr.Video()
                    gr.Examples(
                        examples=[
                            [osp.join(example_video_dir, "d0.mp4")],
                            [osp.join(example_video_dir, "d18.mp4")],
                            [osp.join(example_video_dir, "d19.mp4")],
                            [osp.join(example_video_dir, "d14_trim.mp4")],
                            [osp.join(example_video_dir, "d6_trim.mp4")],
                        ],
                        inputs=[video_input],
                        cache_examples=False,
                    )
            with gr.Row():
                with gr.Accordion(open=False, label="Animation Instructions and Options"):
                    gr.Markdown(load_description("assets/gradio_description_animation.md"))
                    with gr.Row():
                        flag_relative_input = gr.Checkbox(value=True, label="relative motion")
                        flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
                        flag_remap_input = gr.Checkbox(value=True, label="paste-back")
            gr.Markdown(load_description("assets/gradio_description_animate_clear.md"))
            with gr.Row():
                with gr.Column():
                    process_button_animation = gr.Button("🚀 Animate", variant="primary")
                with gr.Column():
                    process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear")
            with gr.Row():
                with gr.Column():
                    with gr.Accordion(open=True, label="The animated video in the original image space"):
                        output_video.render()
                with gr.Column():
                    with gr.Accordion(open=True, label="The animated video"):
                        output_video_concat.render()
            with gr.Row():
                # Examples
                gr.Markdown("## You could also choose the examples below by one click ⬇️")
            with gr.Row():
                gr.Examples(
                    examples=data_examples,
                    fn=gpu_wrapped_execute_video,
                    inputs=[
                        image_input,
                        video_input,
                        flag_relative_input,
                        flag_do_crop_input,
                        flag_remap_input
                    ],
                    outputs=[output_image, output_image_paste_back],
                    examples_per_page=6,
                    cache_examples=False,
                )
        
            process_button_animation.click(
                fn=gpu_wrapped_execute_video,
                inputs=[
                    image_input,
                    video_input,
                    flag_relative_input,
                    flag_do_crop_input,
                    flag_remap_input
                ],
                outputs=[output_video, output_video_concat],
                show_progress=True
            )
            audio_gen_button.click(
                fn=gpu_wrapped_elevenlabs_pipeline_generate_voice,
                inputs=[
                    script_txt
                ],
                outputs=[output_audio_path],
                show_progress=True
            )


            
            # image_input.change(
            #     fn=gradio_pipeline.prepare_retargeting,
            #     inputs=image_input,
            #     outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image]
            # )
            video_input.upload(
                fn=is_square_video,
                inputs=video_input,
                outputs=video_input
            )
        
        # 세 번째 탭: Flux 개발용 탭
        with gr.Tab("FLUX Dev"):
            flux_demo = create_flux_tab(image_input)  # Flux 개발용 탭 생성

demo.launch(
    server_port=args.server_port,
    share=args.share,
    server_name=args.server_name
)