Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,568 Bytes
e8f9a31 8603f30 e8f9a31 663790e e8f9a31 dfb52ae e8f9a31 73776b4 e8f9a31 73776b4 e8f9a31 73776b4 e8f9a31 73776b4 e8f9a31 97c1b39 e8f9a31 2b756ea e8f9a31 2b756ea e8f9a31 7aa9d59 e8f9a31 8603f30 e8f9a31 9bc0b52 e8f9a31 9bc0b52 e8f9a31 97c1b39 e8f9a31 97c1b39 e8f9a31 97c1b39 e8f9a31 8d9e4f3 e8f9a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# coding: utf-8
"""
The entrance of the gradio
"""
import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline_stf import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
import spaces
import cv2
# import gdown
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib"
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False)
import os
import sys
from pathlib import Path
from src.utils.video import extract_audio
from elevenlabs_utils import ElevenLabsPipeline
from setup_environment import initialize_environment
initialize_environment()
sys.path.append('/home/user/.local/lib/python3.10/site-packages')
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative')
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools')
sys.path.append('/home/user/app/')
sys.path.append('/home/user/app/stf/')
sys.path.append('/home/user/app/stf/stf_alternative/')
sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative')
sys.path.append('/home/user/app/stf/stf_tools')
sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools')
# CUDA ๊ฒฝ๋ก๋ฅผ ํ๊ฒฝ ๋ณ์๋ก ์ค์
os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '')
os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
# ํ์ธ์ฉ ์ถ๋ ฅ
print("PATH:", os.environ['PATH'])
print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH'])
from stf_utils import STFPipeline
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
@spaces.GPU(duration=200)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
@spaces.GPU(duration=200)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
@spaces.GPU(duration=200)
def gpu_wrapped_stf_pipeline_execute(audio_path):
return stf_pipeline.execute(audio_path)
@spaces.GPU(duration=200)
def gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice):
return elevenlabs_pipeline.generate_voice(text, voice)
def is_square_video(video_path):
video = cv2.VideoCapture(video_path)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
if width != height:
raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos")
return gr.update(visible=True)
# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
def run_end_to_end(image_path, text, voice, input_video, flag_relative, flag_do_crop, flag_remap, flag_crop_driving_video, male): #, animal):
# # animal ์ฒดํฌ ์ฌ๋ถ์ ๋ฐ๋ผ ๋ค๋ฅธ pipeline ์ฌ์ฉ
# if animal:
# gradio_pipeline = GradioPipelineAnimal(
# inference_cfg=inference_cfg,
# crop_cfg=crop_cfg,
# args=args
# )
# else:
# gradio_pipeline = GradioPipeline(
# inference_cfg=inference_cfg,
# crop_cfg=crop_cfg,
# args=args
# )
if input_video is None:
if not male:
stf_pipeline = STFPipeline()
else:
stf_pipeline = STFPipeline(template_video_path="/home/user/app/stf/TEMP/Cam2_2309071202_0012_Natural_Looped.mp4",
config_path="/home/user/app/stf/TEMP/front_config_v3.json",
checkpoint_path="/home/user/app/stf/TEMP/0157.pth",
)
if input_video is None:
#audio_path = elevenlabs_pipeline.generate_voice(text, voice)
audio_path = gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice)
#driving_video_path = stf_pipeline.execute(audio_path)
driving_video_path = gpu_wrapped_stf_pipeline_execute(audio_path)
else:
driving_video_path = input_video
audio_path = driving_video_path.rsplit(".", 1)[0] + ".wav"
extract_audio(driving_video_path, audio_path)
#output_path, crop_output_path = gradio_pipeline.execute_video(
output_path, crop_output_path = gpu_wrapped_execute_video(
input_image_path=image_path,
input_video_path=driving_video_path,
# input_driving_video_pickle_path=None,
flag_do_crop_input=flag_do_crop,
flag_remap_input=flag_remap,
flag_relative_input=flag_relative,
# driving_multiplier=1.0,
# flag_stitching=False,
# flag_crop_driving_video_input=flag_crop_driving_video,
# scale=2.3,
# vx_ratio=0.0,
# vy_ratio=-0.125,
# scale_crop_driving_video=2.2,
# vx_ratio_crop_driving_video=0.0,
# vy_ratio_crop_driving_video=-0.1,
# tab_selection=None,
audio_path=audio_path
)
return output_path, crop_output_path
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Tabs():
# ์ฒซ ๋ฒ์งธ ํญ: Text to LipSync
with gr.Tab("Text to LipSync"):
gr.Markdown("# Text to LipSync")
with gr.Row():
script_txt = gr.Text()
voice = gr.Audio(label="์ฌ์ฉ์ ์์ฑ", type="filepath")
input_video = gr.Video()
with gr.Row():
image_input = gr.Image(type="filepath") # ์ฌ๊ธฐ์ image_input์ ์ ์ํฉ๋๋ค.
output_video.render()
#crop_output_video.render()
output_video_concat.render()
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving video)")
male = gr.Checkbox(value=False, label="male")
#animal = gr.Checkbox(value=False, label="animal") # animal ์ฒดํฌ๋ฐ์ค ์ถ๊ฐ
with gr.Row():
generate_speech = gr.Button("๐ Generate Speech", variant="primary")
generate_speech.click(
fn=run_end_to_end,
inputs=[
image_input,
script_txt,
voice,
input_video,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input,
male,
#animal # ์ถ๊ฐ๋ animal ์
๋ ฅ
],
outputs=[output_video, output_video_concat]
)
# # ๋ ๋ฒ์งธ ํญ: FLUX ์ด๋ฏธ์ง ์์ฑ
# with gr.Tab("FLUX ์ด๋ฏธ์ง ์์ฑ"):
# flux_tab(image_input) # FLUX ์ด๋ฏธ์ง ์์ฑ์ ์ํ ๋ณ๋์ ํญ
# # ์ธ ๋ฒ์งธ ํญ: Flux ๊ฐ๋ฐ์ฉ ํญ
# with gr.Tab("FLUX Dev"):
# flux_demo = create_flux_tab() # Flux ๊ฐ๋ฐ์ฉ ํญ ์์ฑ
# #flux_demo.render() # ํด๋น UI๋ฅผ ๋ณ๋์ ํญ์๋ง ๋ ๋๋ง
# with gr.Blocks(theme=gr.themes.Soft()) as demo:
# gr.HTML(load_description(title_md))
# gr.Markdown(load_description("assets/gradio_description_upload.md"))
# with gr.Row():
# with gr.Accordion(open=True, label="Source Portrait"):
# image_input = gr.Image(type="filepath")
# gr.Examples(
# examples=[
# [osp.join(example_portrait_dir, "s9.jpg")],
# [osp.join(example_portrait_dir, "s6.jpg")],
# [osp.join(example_portrait_dir, "s10.jpg")],
# [osp.join(example_portrait_dir, "s5.jpg")],
# [osp.join(example_portrait_dir, "s7.jpg")],
# [osp.join(example_portrait_dir, "s12.jpg")],
# [osp.join(example_portrait_dir, "s22.jpg")],
# ],
# inputs=[image_input],
# cache_examples=False,
# )
# with gr.Accordion(open=True, label="Driving Video"):
# video_input = gr.Video()
# gr.Examples(
# examples=[
# [osp.join(example_video_dir, "d0.mp4")],
# [osp.join(example_video_dir, "d18.mp4")],
# [osp.join(example_video_dir, "d19.mp4")],
# [osp.join(example_video_dir, "d14_trim.mp4")],
# [osp.join(example_video_dir, "d6_trim.mp4")],
# ],
# inputs=[video_input],
# cache_examples=False,
# )
# with gr.Row():
# with gr.Accordion(open=False, label="Animation Instructions and Options"):
# gr.Markdown(load_description("assets/gradio_description_animation.md"))
# with gr.Row():
# flag_relative_input = gr.Checkbox(value=True, label="relative motion")
# flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
# flag_remap_input = gr.Checkbox(value=True, label="paste-back")
# gr.Markdown(load_description("assets/gradio_description_animate_clear.md"))
# with gr.Row():
# with gr.Column():
# process_button_animation = gr.Button("๐ Animate", variant="primary")
# with gr.Column():
# process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐งน Clear")
# with gr.Row():
# with gr.Column():
# with gr.Accordion(open=True, label="The animated video in the original image space"):
# output_video.render()
# with gr.Column():
# with gr.Accordion(open=True, label="The animated video"):
# output_video_concat.render()
# with gr.Row():
# # Examples
# gr.Markdown("## You could also choose the examples below by one click โฌ๏ธ")
# with gr.Row():
# gr.Examples(
# examples=data_examples,
# fn=gpu_wrapped_execute_video,
# inputs=[
# image_input,
# video_input,
# flag_relative_input,
# flag_do_crop_input,
# flag_remap_input
# ],
# outputs=[output_image, output_image_paste_back],
# examples_per_page=6,
# cache_examples=False,
# )
# gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True)
# with gr.Row(visible=True):
# eye_retargeting_slider.render()
# lip_retargeting_slider.render()
# with gr.Row(visible=True):
# process_button_retargeting = gr.Button("๐ Retargeting", variant="primary")
# process_button_reset_retargeting = gr.ClearButton(
# [
# eye_retargeting_slider,
# lip_retargeting_slider,
# retargeting_input_image,
# output_image,
# output_image_paste_back
# ],
# value="๐งน Clear"
# )
# with gr.Row(visible=True):
# with gr.Column():
# with gr.Accordion(open=True, label="Retargeting Input"):
# retargeting_input_image.render()
# gr.Examples(
# examples=[
# [osp.join(example_portrait_dir, "s9.jpg")],
# [osp.join(example_portrait_dir, "s6.jpg")],
# [osp.join(example_portrait_dir, "s10.jpg")],
# [osp.join(example_portrait_dir, "s5.jpg")],
# [osp.join(example_portrait_dir, "s7.jpg")],
# [osp.join(example_portrait_dir, "s12.jpg")],
# [osp.join(example_portrait_dir, "s22.jpg")],
# ],
# inputs=[retargeting_input_image],
# cache_examples=False,
# )
# with gr.Column():
# with gr.Accordion(open=True, label="Retargeting Result"):
# output_image.render()
# with gr.Column():
# with gr.Accordion(open=True, label="Paste-back Result"):
# output_image_paste_back.render()
# # binding functions for buttons
# process_button_retargeting.click(
# # fn=gradio_pipeline.execute_image,
# fn=gpu_wrapped_execute_image,
# inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
# outputs=[output_image, output_image_paste_back],
# show_progress=True
# )
# process_button_animation.click(
# fn=gpu_wrapped_execute_video,
# inputs=[
# image_input,
# video_input,
# flag_relative_input,
# flag_do_crop_input,
# flag_remap_input
# ],
# outputs=[output_video, output_video_concat],
# show_progress=True
# )
# # image_input.change(
# # fn=gradio_pipeline.prepare_retargeting,
# # inputs=image_input,
# # outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image]
# # )
# video_input.upload(
# fn=is_square_video,
# inputs=video_input,
# outputs=video_input
# )
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
) |