File size: 7,058 Bytes
9d6f8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f55c77d
9d6f8ad
 
 
 
 
 
 
 
 
 
 
f55c77d
9d6f8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import os
from concurrent.futures import ThreadPoolExecutor
from pydub import AudioSegment
import cv2
from pathlib import Path
import subprocess
from pathlib import Path
import av
import imageio
import numpy as np
from rich.progress import track
from tqdm import tqdm

import stf_alternative

import spaces


def exec_cmd(cmd):
    subprocess.run(
        cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
    )


def images2video(images, wfp, **kwargs):
    fps = kwargs.get("fps", 24)
    video_format = kwargs.get("format", "mp4")  # default is mp4 format
    codec = kwargs.get("codec", "libx264")  # default is libx264 encoding
    quality = kwargs.get("quality")  # video quality
    pixelformat = kwargs.get("pixelformat", "yuv420p")  # video pixel format
    image_mode = kwargs.get("image_mode", "rgb")
    macro_block_size = kwargs.get("macro_block_size", 2)
    ffmpeg_params = ["-crf", str(kwargs.get("crf", 18))]

    writer = imageio.get_writer(
        wfp,
        fps=fps,
        format=video_format,
        codec=codec,
        quality=quality,
        ffmpeg_params=ffmpeg_params,
        pixelformat=pixelformat,
        macro_block_size=macro_block_size,
    )

    n = len(images)
    for i in track(range(n), description="writing", transient=True):
        if image_mode.lower() == "bgr":
            writer.append_data(images[i][..., ::-1])
        else:
            writer.append_data(images[i])

    writer.close()

    # print(f':smiley: Dump to {wfp}\n', style="bold green")
    print(f"Dump to {wfp}\n")


def merge_audio_video(video_fp, audio_fp, wfp):
    if osp.exists(video_fp) and osp.exists(audio_fp):
        cmd = f"ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y"
        exec_cmd(cmd)
        print(f"merge {video_fp} and {audio_fp} to {wfp}")
    else:
        print(f"video_fp: {video_fp} or audio_fp: {audio_fp} not exists!")




class STFPipeline:
    def __init__(
        self,
        stf_path: str = "/home/user/app/stf/",
        template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
        config_path: str = "front_config.json",
        checkpoint_path: str = "089.pth",
        root_path: str = "works",
        wavlm_path: str = "microsoft/wavlm-large",
        device: str = "cuda:0"
    ):
        self.device = device
        self.stf_path = stf_path
        self.config_path = os.path.join(stf_path, config_path)
        self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
        self.work_root_path = os.path.join(stf_path, root_path)
        self.wavlm_path = wavlm_path
        self.template_video_path = template_video_path

        # ๋น„๋™๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ ๋กœ๋”ฉ
        self.model = self.load_model()
        self.template = self.create_template()

    @spaces.GPU(duration=120)
    def load_model(self):
        """๋ชจ๋ธ์„ ์ƒ์„ฑํ•˜๊ณ  GPU์— ํ• ๋‹น."""
        model = stf_alternative.create_model(
            config_path=self.config_path,
            checkpoint_path=self.checkpoint_path,
            work_root_path=self.work_root_path,
            device=self.device,
            wavlm_path=self.wavlm_path
        )
        return model

    @spaces.GPU(duration=120)
    def create_template(self):
        """ํ…œํ”Œ๋ฆฟ ์ƒ์„ฑ."""
        template = stf_alternative.Template(
            model=self.model,
            config_path=self.config_path,
            template_video_path=self.template_video_path
        )
        return template

    def execute(self, audio: str) -> str:
        """์˜ค๋””์˜ค๋ฅผ ์ž…๋ ฅ ๋ฐ›์•„ ๋น„๋””์˜ค๋ฅผ ์ƒ์„ฑ."""
        # ํด๋” ์ƒ์„ฑ
        Path("dubbing").mkdir(exist_ok=True)
        save_path = os.path.join("dubbing", Path(audio).stem + "--lip.mp4")

        reader = iter(self.template._get_reader(num_skip_frames=0))
        audio_segment = AudioSegment.from_file(audio)
        results = []

        # ๋น„๋™๊ธฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ
        with ThreadPoolExecutor(max_workers=4) as executor:
            try:
                gen_infer = self.template.gen_infer_concurrent(
                    executor, audio_segment, 0
                )
                for idx, (it, _) in enumerate(gen_infer):
                    frame = next(reader)
                    composed = self.template.compose(idx, frame, it)
                    results.append(it["pred"])
            except StopIteration:
                pass

        self.images_to_video(results, save_path)
        return save_path

    @staticmethod
    def images_to_video(images, output_path, fps=24):
        """์ด๋ฏธ์ง€ ๋ฐฐ์—ด์„ ๋น„๋””์˜ค๋กœ ๋ณ€ํ™˜."""
        writer = imageio.get_writer(output_path, fps=fps, format="mp4", codec="libx264")
        for i in track(range(len(images)), description="๋น„๋””์˜ค ์ƒ์„ฑ ์ค‘"):
            writer.append_data(images[i])
        writer.close()
        print(f"๋น„๋””์˜ค ์ €์žฅ ์™„๋ฃŒ: {output_path}")
        
# class STFPipeline:
#     def __init__(self,
#                  stf_path: str = "/home/user/app/stf/",
#                  device: str = "cuda:0",
#                  template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
#                  config_path: str = "front_config.json",
#                  checkpoint_path: str = "089.pth",
#                  root_path: str = "works"
                 
#     ):
        
#         config_path = os.path.join(stf_path, config_path)
#         checkpoint_path = os.path.join(stf_path, checkpoint_path)
#         work_root_path = os.path.join(stf_path, root_path)
        
#         model = stf_alternative.create_model(
#         config_path=config_path,
#         checkpoint_path=checkpoint_path,
#         work_root_path=work_root_path,
#         device=device,
#         wavlm_path="microsoft/wavlm-large",
#         )
#         self.template = stf_alternative.Template(
#         model=model,
#         config_path=config_path,
#         template_video_path=template_video_path,
#         )
    

#     def execute(self, audio: str):
#         Path("dubbing").mkdir(exist_ok=True)
#         save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
#         reader = iter(self.template._get_reader(num_skip_frames=0))
#         audio_segment = AudioSegment.from_file(audio)
#         pivot = 0
#         results = []
#         with ThreadPoolExecutor(4) as p:
#             try:

#                 gen_infer = self.template.gen_infer_concurrent(
#                     p,
#                     audio_segment,
#                     pivot,
#                 )
#                 for idx, (it, chunk) in enumerate(gen_infer, pivot):
#                     frame = next(reader)
#                     composed = self.template.compose(idx, frame, it)
#                     frame_name = f"{idx}".zfill(5)+".jpg"
#                     results.append(it['pred'])
#                 pivot = idx + 1
#             except StopIteration as e:
#                 pass
            
#         images2video(results, save_path)
                                
#         return save_path