LivePortrait / app.py
yerang's picture
Update app.py
35ff6ed verified
raw
history blame
15 kB
# coding: utf-8
"""
The entrance of the gradio
"""
import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
import spaces
import cv2
import torch
#์ถ”๊ฐ€
from elevenlabs_utils import ElevenLabsPipeline
from setup_environment import initialize_environment
from src.utils.video import extract_audio
#from flux_dev import create_flux_tab
from flux_schnell import create_flux_tab
# from diffusers import FluxPipeline
# import gdown
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib"
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False)
# #========================= # FLUX ๋ชจ๋ธ ๋กœ๋“œ ์„ค์ •
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
# flux_pipe.enable_sequential_cpu_offload()
# flux_pipe.vae.enable_slicing()
# flux_pipe.vae.enable_tiling()
# flux_pipe.to(torch.float16)
# @spaces.GPU(duration=120)
# def generate_image(prompt, guidance_scale, width, height):
# # ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜
# output_image = flux_pipe(
# prompt=prompt,
# guidance_scale=guidance_scale,
# height=height,
# width=width,
# num_inference_steps=4,
# max_sequence_length=256,
# ).images[0]
# # ๊ฒฐ๊ณผ ํด๋” ์ƒ์„ฑ
# result_folder = "/tmp/flux/"
# os.makedirs(result_folder, exist_ok=True)
# # ํŒŒ์ผ ์ด๋ฆ„ ์ƒ์„ฑ
# timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
# #filename = f"{prompt.replace(' ', '_')}_{timestamp}.png"
# filename = f"{'_'.join(prompt.split()[:3])}_{timestamp}.png"
# output_path = os.path.join(result_folder, filename)
# # # ์ด๋ฏธ์ง€๋ฅผ ์ €์žฅ
# # output_image.save(output_path)
# return output_image, output_path # ๋‘ ๊ฐœ์˜ ์ถœ๋ ฅ ๋ฐ˜ํ™˜
# def flux_tab(): #image_input): # image_input์„ ์ธ์ž๋กœ ๋ฐ›์Šต๋‹ˆ๋‹ค.
# with gr.Tab("FLUX ์ด๋ฏธ์ง€ ์ƒ์„ฑ"):
# with gr.Row():
# with gr.Column():
# # ์‚ฌ์šฉ์ž ์ž…๋ ฅ ์„ค์ •
# prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
# guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, value=3.5, step=0.1)
# width = gr.Slider(label="Width", minimum=256, maximum=2048, value=512, step=64)
# height = gr.Slider(label="Height", minimum=256, maximum=2048, value=512, step=64)
# with gr.Column():
# # ์ถœ๋ ฅ ์ด๋ฏธ์ง€์™€ ๋‹ค์šด๋กœ๋“œ ๋ฒ„ํŠผ
# output_image = gr.Image(type="pil", label="Output")
# download_button = gr.File(label="Download")
# generate_button = gr.Button("์ด๋ฏธ์ง€ ์ƒ์„ฑ")
# #use_in_text2lipsync_button = gr.Button("์ด ์ด๋ฏธ์ง€๋ฅผ Text2Lipsync์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ") # ์ƒˆ๋กœ์šด ๋ฒ„ํŠผ ์ถ”๊ฐ€
# # ํด๋ฆญ ์ด๋ฒคํŠธ๋ฅผ ์ •์˜
# generate_button.click(
# fn=generate_image,
# inputs=[prompt, guidance_scale, width, height],
# outputs=[output_image, download_button]
# )
# # # ์ƒˆ๋กœ์šด ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ ์ •์˜
# # use_in_text2lipsync_button.click(
# # fn=lambda img: img, # ๊ฐ„๋‹จํ•œ ๋žŒ๋‹ค ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ๊ทธ๋Œ€๋กœ ์ „๋‹ฌ
# # inputs=[output_image], # ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ
# # outputs=[image_input] # Text to LipSync ํƒญ์˜ image_input์„ ์—…๋ฐ์ดํŠธ
# # )
# #========================= # FLUX ๋ชจ๋ธ ๋กœ๋“œ ์„ค์ •
initialize_environment()
import sys
sys.path.append('/home/user/.local/lib/python3.10/site-packages')
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative')
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools')
sys.path.append('/home/user/app/')
sys.path.append('/home/user/app/stf/')
sys.path.append('/home/user/app/stf/stf_alternative/')
sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative')
sys.path.append('/home/user/app/stf/stf_tools')
sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools')
import os
# CUDA ๊ฒฝ๋กœ๋ฅผ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋กœ ์„ค์ •
os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '')
os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
# ํ™•์ธ์šฉ ์ถœ๋ ฅ
print("PATH:", os.environ['PATH'])
print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH'])
from stf_utils import STFPipeline
# audio_path="assets/examples/driving/test_aud.mp3"
#audio_path_component = gr.Textbox(label="Input", value="assets/examples/driving/test_aud.mp3")
# @spaces.GPU(duration=120)
# def gpu_wrapped_stf_pipeline_execute(audio_path):
# return stf_pipeline.execute(audio_path)
# ###### ํ…Œ์ŠคํŠธ์ค‘ ######
# stf_pipeline = STFPipeline()
# driving_video_path=gr.Video()
# # set tyro theme
# tyro.extras.set_accent_color("bright_cyan")
# args = tyro.cli(ArgumentConfig)
# with gr.Blocks(theme=gr.themes.Soft()) as demo:
# with gr.Row():
# audio_path_component = gr.Textbox(label="Input", value="assets/examples/driving/test_aud.mp3")
# stf_button = gr.Button("stf test", variant="primary")
# stf_button.click(
# fn=gpu_wrapped_stf_pipeline_execute,
# inputs=[
# audio_path_component
# ],
# outputs=[driving_video_path]
# )
# with gr.Row():
# driving_video_path.render()
# with gr.Row():
# create_flux_tab() # image_input์„ flux_tab์— ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค.
# ###### ํ…Œ์ŠคํŠธ์ค‘ ######
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
# ์ถ”๊ฐ€ ์ •์˜
elevenlabs_pipeline = ElevenLabsPipeline()
stf_pipeline = STFPipeline()
driving_video_path=gr.Video()
@spaces.GPU(duration=120)
def gpu_wrapped_stf_pipeline_execute(audio_path):
return stf_pipeline.execute(audio_path)
@spaces.GPU(duration=200)
def gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice):
return elevenlabs_pipeline.generate_voice(text, voice)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
def is_square_video(video_path):
video = cv2.VideoCapture(video_path)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
if width != height:
raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos")
return gr.update(visible=True)
def txt_to_driving_video(text):
audio_path = gpu_wrapped_elevenlabs_pipeline_generate_voice(text)
driving_video_path = gpu_wrapped_stf_pipeline_execute(audio_path)
return driving_video_path
# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
video_input = gr.Video()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
#gr.HTML(load_description(title_md))
with gr.Tabs():
with gr.Tab("Text to LipSync"):
gr.Markdown("# Text to LipSync")
with gr.Row():
with gr.Column():
script_txt = gr.Text()
with gr.Column():
txt2video_gen_button = gr.Button("txt2video generation", variant="primary")
# with gr.Column():
# audio_gen_button = gr.Button("Audio generation", variant="primary")
# with gr.Row():
# video_input = gr.Audio(label="Generated video", type="filepath")
gr.Markdown(load_description("assets/gradio_description_upload.md"))
with gr.Row():
with gr.Accordion(open=True, label="Source Portrait"):
image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
[osp.join(example_portrait_dir, "s22.jpg")],
],
inputs=[image_input],
cache_examples=False,
)
with gr.Accordion(open=True, label="Driving Video"):
#video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14_trim.mp4")],
[osp.join(example_video_dir, "d6_trim.mp4")],
],
inputs=[video_input],
cache_examples=False,
)
with gr.Row():
with gr.Accordion(open=False, label="Animation Instructions and Options"):
gr.Markdown(load_description("assets/gradio_description_animation.md"))
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
gr.Markdown(load_description("assets/gradio_description_animate_clear.md"))
with gr.Row():
with gr.Column():
process_button_animation = gr.Button("๐Ÿš€ Animate", variant="primary")
with gr.Column():
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐Ÿงน Clear")
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="The animated video in the original image space"):
output_video.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated video"):
output_video_concat.render()
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click โฌ‡๏ธ")
with gr.Row():
gr.Examples(
examples=data_examples,
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_image, output_image_paste_back],
examples_per_page=6,
cache_examples=False,
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_video, output_video_concat],
show_progress=True
)
txt2video_gen_button.click(
fn=txt_to_driving_video,
inputs=[
script_txt
],
outputs=[video_input],
show_progress=True
)
# image_input.change(
# fn=gradio_pipeline.prepare_retargeting,
# inputs=image_input,
# outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image]
# )
video_input.upload(
fn=is_square_video,
inputs=video_input,
outputs=video_input
)
# ์„ธ ๋ฒˆ์งธ ํƒญ: Flux ๊ฐœ๋ฐœ์šฉ ํƒญ
with gr.Tab("FLUX Image"):
flux_demo = create_flux_tab(image_input) # Flux ๊ฐœ๋ฐœ์šฉ ํƒญ ์ƒ์„ฑ
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)