Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
""" | |
The entrance of the gradio | |
""" | |
import tyro | |
import gradio as gr | |
import os.path as osp | |
from src.utils.helper import load_description | |
from src.gradio_pipeline import GradioPipeline | |
from src.config.crop_config import CropConfig | |
from src.config.argument_config import ArgumentConfig | |
from src.config.inference_config import InferenceConfig | |
import spaces | |
import cv2 | |
import torch | |
#์ถ๊ฐ | |
from elevenlabs_utils import ElevenLabsPipeline | |
from setup_environment import initialize_environment | |
from src.utils.video import extract_audio | |
#from flux_dev import create_flux_tab | |
from flux_schnell import create_flux_tab | |
# from diffusers import FluxPipeline | |
# import gdown | |
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib" | |
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False) | |
# #========================= # FLUX ๋ชจ๋ธ ๋ก๋ ์ค์ | |
# flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) | |
# flux_pipe.enable_sequential_cpu_offload() | |
# flux_pipe.vae.enable_slicing() | |
# flux_pipe.vae.enable_tiling() | |
# flux_pipe.to(torch.float16) | |
# @spaces.GPU(duration=120) | |
# def generate_image(prompt, guidance_scale, width, height): | |
# # ์ด๋ฏธ์ง๋ฅผ ์์ฑํ๋ ํจ์ | |
# output_image = flux_pipe( | |
# prompt=prompt, | |
# guidance_scale=guidance_scale, | |
# height=height, | |
# width=width, | |
# num_inference_steps=4, | |
# max_sequence_length=256, | |
# ).images[0] | |
# # ๊ฒฐ๊ณผ ํด๋ ์์ฑ | |
# result_folder = "/tmp/flux/" | |
# os.makedirs(result_folder, exist_ok=True) | |
# # ํ์ผ ์ด๋ฆ ์์ฑ | |
# timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
# #filename = f"{prompt.replace(' ', '_')}_{timestamp}.png" | |
# filename = f"{'_'.join(prompt.split()[:3])}_{timestamp}.png" | |
# output_path = os.path.join(result_folder, filename) | |
# # # ์ด๋ฏธ์ง๋ฅผ ์ ์ฅ | |
# # output_image.save(output_path) | |
# return output_image, output_path # ๋ ๊ฐ์ ์ถ๋ ฅ ๋ฐํ | |
# def flux_tab(): #image_input): # image_input์ ์ธ์๋ก ๋ฐ์ต๋๋ค. | |
# with gr.Tab("FLUX ์ด๋ฏธ์ง ์์ฑ"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# # ์ฌ์ฉ์ ์ ๋ ฅ ์ค์ | |
# prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world") | |
# guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, value=3.5, step=0.1) | |
# width = gr.Slider(label="Width", minimum=256, maximum=2048, value=512, step=64) | |
# height = gr.Slider(label="Height", minimum=256, maximum=2048, value=512, step=64) | |
# with gr.Column(): | |
# # ์ถ๋ ฅ ์ด๋ฏธ์ง์ ๋ค์ด๋ก๋ ๋ฒํผ | |
# output_image = gr.Image(type="pil", label="Output") | |
# download_button = gr.File(label="Download") | |
# generate_button = gr.Button("์ด๋ฏธ์ง ์์ฑ") | |
# #use_in_text2lipsync_button = gr.Button("์ด ์ด๋ฏธ์ง๋ฅผ Text2Lipsync์์ ์ฌ์ฉํ๊ธฐ") # ์๋ก์ด ๋ฒํผ ์ถ๊ฐ | |
# # ํด๋ฆญ ์ด๋ฒคํธ๋ฅผ ์ ์ | |
# generate_button.click( | |
# fn=generate_image, | |
# inputs=[prompt, guidance_scale, width, height], | |
# outputs=[output_image, download_button] | |
# ) | |
# # # ์๋ก์ด ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ์ ์ | |
# # use_in_text2lipsync_button.click( | |
# # fn=lambda img: img, # ๊ฐ๋จํ ๋๋ค ํจ์๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง๋ฅผ ๊ทธ๋๋ก ์ ๋ฌ | |
# # inputs=[output_image], # ์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ ์ ๋ ฅ์ผ๋ก ์ฌ์ฉ | |
# # outputs=[image_input] # Text to LipSync ํญ์ image_input์ ์ ๋ฐ์ดํธ | |
# # ) | |
# #========================= # FLUX ๋ชจ๋ธ ๋ก๋ ์ค์ | |
initialize_environment() | |
import sys | |
sys.path.append('/home/user/.local/lib/python3.10/site-packages') | |
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative') | |
sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools') | |
sys.path.append('/home/user/app/') | |
sys.path.append('/home/user/app/stf/') | |
sys.path.append('/home/user/app/stf/stf_alternative/') | |
sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative') | |
sys.path.append('/home/user/app/stf/stf_tools') | |
sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools') | |
import os | |
# CUDA ๊ฒฝ๋ก๋ฅผ ํ๊ฒฝ ๋ณ์๋ก ์ค์ | |
os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '') | |
os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '') | |
# ํ์ธ์ฉ ์ถ๋ ฅ | |
print("PATH:", os.environ['PATH']) | |
print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH']) | |
from stf_utils import STFPipeline | |
# audio_path="assets/examples/driving/test_aud.mp3" | |
#audio_path_component = gr.Textbox(label="Input", value="assets/examples/driving/test_aud.mp3") | |
# @spaces.GPU(duration=120) | |
# def gpu_wrapped_stf_pipeline_execute(audio_path): | |
# return stf_pipeline.execute(audio_path) | |
# ###### ํ ์คํธ์ค ###### | |
# stf_pipeline = STFPipeline() | |
# driving_video_path=gr.Video() | |
# # set tyro theme | |
# tyro.extras.set_accent_color("bright_cyan") | |
# args = tyro.cli(ArgumentConfig) | |
# with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
# with gr.Row(): | |
# audio_path_component = gr.Textbox(label="Input", value="assets/examples/driving/test_aud.mp3") | |
# stf_button = gr.Button("stf test", variant="primary") | |
# stf_button.click( | |
# fn=gpu_wrapped_stf_pipeline_execute, | |
# inputs=[ | |
# audio_path_component | |
# ], | |
# outputs=[driving_video_path] | |
# ) | |
# with gr.Row(): | |
# driving_video_path.render() | |
# with gr.Row(): | |
# create_flux_tab() # image_input์ flux_tab์ ์ ๋ฌํฉ๋๋ค. | |
# ###### ํ ์คํธ์ค ###### | |
def partial_fields(target_class, kwargs): | |
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) | |
# set tyro theme | |
tyro.extras.set_accent_color("bright_cyan") | |
args = tyro.cli(ArgumentConfig) | |
# specify configs for inference | |
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig | |
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig | |
gradio_pipeline = GradioPipeline( | |
inference_cfg=inference_cfg, | |
crop_cfg=crop_cfg, | |
args=args | |
) | |
# ์ถ๊ฐ ์ ์ | |
elevenlabs_pipeline = ElevenLabsPipeline() | |
stf_pipeline = STFPipeline() | |
driving_video_path=gr.Video() | |
def gpu_wrapped_stf_pipeline_execute(audio_path): | |
return stf_pipeline.execute(audio_path) | |
def gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice): | |
return elevenlabs_pipeline.generate_voice(text, voice) | |
def gpu_wrapped_execute_video(*args, **kwargs): | |
return gradio_pipeline.execute_video(*args, **kwargs) | |
def gpu_wrapped_execute_image(*args, **kwargs): | |
return gradio_pipeline.execute_image(*args, **kwargs) | |
def is_square_video(video_path): | |
video = cv2.VideoCapture(video_path) | |
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
video.release() | |
if width != height: | |
raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos") | |
return gr.update(visible=True) | |
def txt_to_driving_video(text): | |
audio_path = gpu_wrapped_elevenlabs_pipeline_generate_voice(text) | |
driving_video_path = gpu_wrapped_stf_pipeline_execute(audio_path) | |
return driving_video_path | |
# assets | |
title_md = "assets/gradio_title.md" | |
example_portrait_dir = "assets/examples/source" | |
example_video_dir = "assets/examples/driving" | |
data_examples = [ | |
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True], | |
[osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
] | |
#################### interface logic #################### | |
# Define components first | |
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") | |
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") | |
retargeting_input_image = gr.Image(type="filepath") | |
output_image = gr.Image(type="numpy") | |
output_image_paste_back = gr.Image(type="numpy") | |
output_video = gr.Video() | |
output_video_concat = gr.Video() | |
video_input = gr.Video() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
#gr.HTML(load_description(title_md)) | |
with gr.Tabs(): | |
with gr.Tab("Text to LipSync"): | |
gr.Markdown("# Text to LipSync") | |
with gr.Row(): | |
with gr.Column(): | |
script_txt = gr.Text() | |
with gr.Column(): | |
txt2video_gen_button = gr.Button("txt2video generation", variant="primary") | |
# with gr.Column(): | |
# audio_gen_button = gr.Button("Audio generation", variant="primary") | |
# with gr.Row(): | |
# video_input = gr.Audio(label="Generated video", type="filepath") | |
gr.Markdown(load_description("assets/gradio_description_upload.md")) | |
with gr.Row(): | |
with gr.Accordion(open=True, label="Source Portrait"): | |
image_input = gr.Image(type="filepath") | |
gr.Examples( | |
examples=[ | |
[osp.join(example_portrait_dir, "s9.jpg")], | |
[osp.join(example_portrait_dir, "s6.jpg")], | |
[osp.join(example_portrait_dir, "s10.jpg")], | |
[osp.join(example_portrait_dir, "s5.jpg")], | |
[osp.join(example_portrait_dir, "s7.jpg")], | |
[osp.join(example_portrait_dir, "s12.jpg")], | |
[osp.join(example_portrait_dir, "s22.jpg")], | |
], | |
inputs=[image_input], | |
cache_examples=False, | |
) | |
with gr.Accordion(open=True, label="Driving Video"): | |
#video_input = gr.Video() | |
gr.Examples( | |
examples=[ | |
[osp.join(example_video_dir, "d0.mp4")], | |
[osp.join(example_video_dir, "d18.mp4")], | |
[osp.join(example_video_dir, "d19.mp4")], | |
[osp.join(example_video_dir, "d14_trim.mp4")], | |
[osp.join(example_video_dir, "d6_trim.mp4")], | |
], | |
inputs=[video_input], | |
cache_examples=False, | |
) | |
with gr.Row(): | |
with gr.Accordion(open=False, label="Animation Instructions and Options"): | |
gr.Markdown(load_description("assets/gradio_description_animation.md")) | |
with gr.Row(): | |
flag_relative_input = gr.Checkbox(value=True, label="relative motion") | |
flag_do_crop_input = gr.Checkbox(value=True, label="do crop") | |
flag_remap_input = gr.Checkbox(value=True, label="paste-back") | |
gr.Markdown(load_description("assets/gradio_description_animate_clear.md")) | |
with gr.Row(): | |
with gr.Column(): | |
process_button_animation = gr.Button("๐ Animate", variant="primary") | |
with gr.Column(): | |
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐งน Clear") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion(open=True, label="The animated video in the original image space"): | |
output_video.render() | |
with gr.Column(): | |
with gr.Accordion(open=True, label="The animated video"): | |
output_video_concat.render() | |
with gr.Row(): | |
# Examples | |
gr.Markdown("## You could also choose the examples below by one click โฌ๏ธ") | |
with gr.Row(): | |
gr.Examples( | |
examples=data_examples, | |
fn=gpu_wrapped_execute_video, | |
inputs=[ | |
image_input, | |
video_input, | |
flag_relative_input, | |
flag_do_crop_input, | |
flag_remap_input | |
], | |
outputs=[output_image, output_image_paste_back], | |
examples_per_page=6, | |
cache_examples=False, | |
) | |
process_button_animation.click( | |
fn=gpu_wrapped_execute_video, | |
inputs=[ | |
image_input, | |
video_input, | |
flag_relative_input, | |
flag_do_crop_input, | |
flag_remap_input | |
], | |
outputs=[output_video, output_video_concat], | |
show_progress=True | |
) | |
txt2video_gen_button.click( | |
fn=txt_to_driving_video, | |
inputs=[ | |
script_txt | |
], | |
outputs=[video_input], | |
show_progress=True | |
) | |
# image_input.change( | |
# fn=gradio_pipeline.prepare_retargeting, | |
# inputs=image_input, | |
# outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image] | |
# ) | |
video_input.upload( | |
fn=is_square_video, | |
inputs=video_input, | |
outputs=video_input | |
) | |
# ์ธ ๋ฒ์งธ ํญ: Flux ๊ฐ๋ฐ์ฉ ํญ | |
with gr.Tab("FLUX Image"): | |
flux_demo = create_flux_tab(image_input) # Flux ๊ฐ๋ฐ์ฉ ํญ ์์ฑ | |
demo.launch( | |
server_port=args.server_port, | |
share=args.share, | |
server_name=args.server_name | |
) | |