Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
from numpy.linalg import norm as l2norm | |
#from easydict import EasyDict | |
class Face(dict): | |
def __init__(self, d=None, **kwargs): | |
if d is None: | |
d = {} | |
if kwargs: | |
d.update(**kwargs) | |
for k, v in d.items(): | |
setattr(self, k, v) | |
# Class attributes | |
#for k in self.__class__.__dict__.keys(): | |
# if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'): | |
# setattr(self, k, getattr(self, k)) | |
def __setattr__(self, name, value): | |
if isinstance(value, (list, tuple)): | |
value = [self.__class__(x) | |
if isinstance(x, dict) else x for x in value] | |
elif isinstance(value, dict) and not isinstance(value, self.__class__): | |
value = self.__class__(value) | |
super(Face, self).__setattr__(name, value) | |
super(Face, self).__setitem__(name, value) | |
__setitem__ = __setattr__ | |
def __getattr__(self, name): | |
return None | |
def embedding_norm(self): | |
if self.embedding is None: | |
return None | |
return l2norm(self.embedding) | |
def normed_embedding(self): | |
if self.embedding is None: | |
return None | |
return self.embedding / self.embedding_norm | |
def sex(self): | |
if self.gender is None: | |
return None | |
return 'M' if self.gender==1 else 'F' | |