yerang commited on
Commit
336b8ba
1 Parent(s): 637f73a

Create flux_dev.py

Browse files
Files changed (1) hide show
  1. flux_dev.py +133 -0
flux_dev.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import torch
5
+ import spaces
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
+
10
+ from huggingface_hub import login
11
+ import os
12
+ token = os.getenv("HF_TOKEN")
13
+ login(token=token)
14
+
15
+ dtype = torch.bfloat16
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+
18
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
19
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
20
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
21
+ torch.cuda.empty_cache()
22
+
23
+ MAX_SEED = np.iinfo(np.int32).max
24
+ MAX_IMAGE_SIZE = 2048
25
+
26
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
27
+
28
+ @spaces.GPU(duration=75)
29
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
30
+ if randomize_seed:
31
+ seed = random.randint(0, MAX_SEED)
32
+ generator = torch.Generator().manual_seed(seed)
33
+
34
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
35
+ prompt=prompt,
36
+ guidance_scale=guidance_scale,
37
+ num_inference_steps=num_inference_steps,
38
+ width=width,
39
+ height=height,
40
+ generator=generator,
41
+ output_type="pil",
42
+ good_vae=good_vae,
43
+ ):
44
+ yield img, seed
45
+
46
+
47
+ def create_flux_tab():
48
+ examples = [
49
+ "a tiny astronaut hatching from an egg on the moon",
50
+ "a cat holding a sign that says hello world",
51
+ "an anime illustration of a wiener schnitzel",
52
+ ]
53
+
54
+ css = """
55
+ #col-container {
56
+ margin: 0 auto;
57
+ max-width: 520px;
58
+ }
59
+ """
60
+
61
+ with gr.Blocks(css=css) as flux_demo:
62
+ with gr.Column(elem_id="col-container"):
63
+ gr.Markdown(f"""# FLUX.1 [dev]""")
64
+ with gr.Row():
65
+ prompt = gr.Text(
66
+ label="Prompt",
67
+ show_label=False,
68
+ max_lines=1,
69
+ placeholder="Enter your prompt",
70
+ container=False,
71
+ )
72
+ run_button = gr.Button("Run", scale=0)
73
+
74
+ result = gr.Image(label="Result", show_label=False)
75
+
76
+ with gr.Accordion("Advanced Settings", open=False):
77
+ seed = gr.Slider(
78
+ label="Seed",
79
+ minimum=0,
80
+ maximum=MAX_SEED,
81
+ step=1,
82
+ value=0,
83
+ )
84
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
85
+
86
+ with gr.Row():
87
+ width = gr.Slider(
88
+ label="Width",
89
+ minimum=256,
90
+ maximum=MAX_IMAGE_SIZE,
91
+ step=32,
92
+ value=1024,
93
+ )
94
+ height = gr.Slider(
95
+ label="Height",
96
+ minimum=256,
97
+ maximum=MAX_IMAGE_SIZE,
98
+ step=32,
99
+ value=1024,
100
+ )
101
+
102
+ with gr.Row():
103
+ guidance_scale = gr.Slider(
104
+ label="Guidance Scale",
105
+ minimum=1,
106
+ maximum=15,
107
+ step=0.1,
108
+ value=3.5,
109
+ )
110
+ num_inference_steps = gr.Slider(
111
+ label="Number of inference steps",
112
+ minimum=1,
113
+ maximum=50,
114
+ step=1,
115
+ value=28,
116
+ )
117
+
118
+ gr.Examples(
119
+ examples=examples,
120
+ fn=infer,
121
+ inputs=[prompt],
122
+ outputs=[result, seed],
123
+ cache_examples="lazy"
124
+ )
125
+
126
+ gr.on(
127
+ triggers=[run_button.click, prompt.submit],
128
+ fn=infer,
129
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
130
+ outputs=[result, seed]
131
+ )
132
+
133
+ return flux_demo