Spaces:
Running
on
Zero
Running
on
Zero
Update stf_utils.py
Browse files- stf_utils.py +96 -109
stf_utils.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2 |
import os
|
3 |
from concurrent.futures import ThreadPoolExecutor
|
4 |
from pydub import AudioSegment
|
5 |
-
import cv2
|
6 |
from pathlib import Path
|
7 |
import subprocess
|
8 |
from pathlib import Path
|
@@ -14,7 +14,6 @@ from tqdm import tqdm
|
|
14 |
|
15 |
import stf_alternative
|
16 |
|
17 |
-
import spaces
|
18 |
|
19 |
|
20 |
def exec_cmd(cmd):
|
@@ -69,138 +68,126 @@ def merge_audio_video(video_fp, audio_fp, wfp):
|
|
69 |
|
70 |
|
71 |
class STFPipeline:
|
72 |
-
def __init__(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
):
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
self.config_path = os.path.join(stf_path, config_path)
|
85 |
self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
|
86 |
-
self.work_root_path = os.path.join(stf_path, root_path)
|
87 |
-
self.
|
88 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
self.model = self.load_model()
|
92 |
-
self.template = self.create_template()
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
model = stf_alternative.create_model(
|
98 |
config_path=self.config_path,
|
99 |
checkpoint_path=self.checkpoint_path,
|
100 |
work_root_path=self.work_root_path,
|
101 |
device=self.device,
|
102 |
-
wavlm_path=
|
103 |
)
|
104 |
-
return model
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
template = stf_alternative.Template(
|
110 |
-
model=self.model,
|
111 |
config_path=self.config_path,
|
112 |
-
template_video_path=self.template_video_path
|
113 |
)
|
114 |
-
return template
|
115 |
|
116 |
-
def execute(self, audio: str) -> str:
|
117 |
-
"""오디오를 입력 받아 비디오를 생성."""
|
118 |
-
# 폴더 생성
|
119 |
-
Path("dubbing").mkdir(exist_ok=True)
|
120 |
-
save_path = os.path.join("dubbing", Path(audio).stem + "--lip.mp4")
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
reader = iter(self.template._get_reader(num_skip_frames=0))
|
|
|
123 |
audio_segment = AudioSegment.from_file(audio)
|
|
|
124 |
results = []
|
125 |
|
126 |
-
#
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
try:
|
|
|
129 |
gen_infer = self.template.gen_infer_concurrent(
|
130 |
-
|
|
|
|
|
131 |
)
|
132 |
-
for idx, (it,
|
133 |
frame = next(reader)
|
134 |
composed = self.template.compose(idx, frame, it)
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
pass
|
138 |
|
139 |
-
|
140 |
-
return save_path
|
141 |
-
|
142 |
-
@staticmethod
|
143 |
-
def images_to_video(images, output_path, fps=24):
|
144 |
-
"""이미지 배열을 비디오로 변환."""
|
145 |
-
writer = imageio.get_writer(output_path, fps=fps, format="mp4", codec="libx264")
|
146 |
-
for i in track(range(len(images)), description="비디오 생성 중"):
|
147 |
-
writer.append_data(images[i])
|
148 |
-
writer.close()
|
149 |
-
print(f"비디오 저장 완료: {output_path}")
|
150 |
-
|
151 |
-
# class STFPipeline:
|
152 |
-
# def __init__(self,
|
153 |
-
# stf_path: str = "/home/user/app/stf/",
|
154 |
-
# device: str = "cuda:0",
|
155 |
-
# template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
|
156 |
-
# config_path: str = "front_config.json",
|
157 |
-
# checkpoint_path: str = "089.pth",
|
158 |
-
# root_path: str = "works"
|
159 |
-
|
160 |
-
# ):
|
161 |
-
|
162 |
-
# config_path = os.path.join(stf_path, config_path)
|
163 |
-
# checkpoint_path = os.path.join(stf_path, checkpoint_path)
|
164 |
-
# work_root_path = os.path.join(stf_path, root_path)
|
165 |
-
|
166 |
-
# model = stf_alternative.create_model(
|
167 |
-
# config_path=config_path,
|
168 |
-
# checkpoint_path=checkpoint_path,
|
169 |
-
# work_root_path=work_root_path,
|
170 |
-
# device=device,
|
171 |
-
# wavlm_path="microsoft/wavlm-large",
|
172 |
-
# )
|
173 |
-
# self.template = stf_alternative.Template(
|
174 |
-
# model=model,
|
175 |
-
# config_path=config_path,
|
176 |
-
# template_video_path=template_video_path,
|
177 |
-
# )
|
178 |
-
|
179 |
-
|
180 |
-
# def execute(self, audio: str):
|
181 |
-
# Path("dubbing").mkdir(exist_ok=True)
|
182 |
-
# save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
|
183 |
-
# reader = iter(self.template._get_reader(num_skip_frames=0))
|
184 |
-
# audio_segment = AudioSegment.from_file(audio)
|
185 |
-
# pivot = 0
|
186 |
-
# results = []
|
187 |
-
# with ThreadPoolExecutor(4) as p:
|
188 |
-
# try:
|
189 |
-
|
190 |
-
# gen_infer = self.template.gen_infer_concurrent(
|
191 |
-
# p,
|
192 |
-
# audio_segment,
|
193 |
-
# pivot,
|
194 |
-
# )
|
195 |
-
# for idx, (it, chunk) in enumerate(gen_infer, pivot):
|
196 |
-
# frame = next(reader)
|
197 |
-
# composed = self.template.compose(idx, frame, it)
|
198 |
-
# frame_name = f"{idx}".zfill(5)+".jpg"
|
199 |
-
# results.append(it['pred'])
|
200 |
-
# pivot = idx + 1
|
201 |
-
# except StopIteration as e:
|
202 |
-
# pass
|
203 |
-
|
204 |
-
# images2video(results, save_path)
|
205 |
|
206 |
-
|
|
|
2 |
import os
|
3 |
from concurrent.futures import ThreadPoolExecutor
|
4 |
from pydub import AudioSegment
|
5 |
+
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
|
6 |
from pathlib import Path
|
7 |
import subprocess
|
8 |
from pathlib import Path
|
|
|
14 |
|
15 |
import stf_alternative
|
16 |
|
|
|
17 |
|
18 |
|
19 |
def exec_cmd(cmd):
|
|
|
68 |
|
69 |
|
70 |
class STFPipeline:
|
71 |
+
def __init__(self,
|
72 |
+
stf_path: str = "/home/user/app/stf/",
|
73 |
+
device: str = "cuda:0",
|
74 |
+
template_video_path: str = "templates/front_one_piece_dress_nodded_cut.webm",
|
75 |
+
config_path: str = "front_config.json",
|
76 |
+
checkpoint_path: str = "089.pth",
|
77 |
+
#root_path: str = "works"
|
78 |
+
root_path: str = "/tmp/works",
|
79 |
+
male : bool = False
|
80 |
+
|
81 |
):
|
82 |
+
#os.makedirs(root_path, exist_ok=True)
|
83 |
+
import shutil; shutil.copytree('/home/user/app/stf/works', '/tmp/works', dirs_exist_ok=True)
|
84 |
+
|
85 |
+
import zipfile
|
86 |
+
|
87 |
+
if not male:
|
88 |
+
dir_zip='/tmp/works/preprocess/nasilhong_f_v1_front/crop_video_front_one_piece_dress_nodded_cut.zip'
|
89 |
+
dir_target='/tmp/works/preprocess/nasilhong_f_v1_front/'
|
90 |
+
zipfile.ZipFile(dir_zip, 'r').extractall(dir_target)
|
91 |
+
|
92 |
+
dir_zip='/tmp/works/preprocess/nasilhong_f_v1_front/front_one_piece_dress_nodded_cut.zip'
|
93 |
+
dir_target='/tmp/works/preprocess/nasilhong_f_v1_front/'
|
94 |
+
zipfile.ZipFile(dir_zip, 'r').extractall(dir_target)
|
95 |
+
else:
|
96 |
+
dir_zip='/tmp/works/preprocess/Ian_v3_front/crop_video_Cam2_2309071202_0012_Natural_Looped.zip'
|
97 |
+
dir_target='/tmp/works/preprocess/Ian_v3_front/'
|
98 |
+
zipfile.ZipFile(dir_zip, 'r').extractall(dir_target)
|
99 |
+
|
100 |
+
dir_zip='/tmp/works/preprocess/Ian_v3_front/Cam2_2309071202_0012_Natural_Looped.zip'
|
101 |
+
dir_target='/tmp/works/preprocess/Ian_v3_front/'
|
102 |
+
zipfile.ZipFile(dir_zip, 'r').extractall(dir_target)
|
103 |
+
|
104 |
+
|
105 |
self.config_path = os.path.join(stf_path, config_path)
|
106 |
self.checkpoint_path = os.path.join(stf_path, checkpoint_path)
|
107 |
+
#self.work_root_path = os.path.join(stf_path, root_path)
|
108 |
+
self.work_root_path = os.path.join(root_path)
|
109 |
+
self.device = device
|
110 |
+
self.template_video_path=os.path.join(stf_path, template_video_path)
|
111 |
+
|
112 |
+
# model = stf_alternative.create_model(
|
113 |
+
# config_path=config_path,
|
114 |
+
# checkpoint_path=checkpoint_path,
|
115 |
+
# work_root_path=work_root_path,
|
116 |
+
# device=device,
|
117 |
+
# wavlm_path="microsoft/wavlm-large",
|
118 |
+
# )
|
119 |
+
# self.template = stf_alternative.Template(
|
120 |
+
# model=model,
|
121 |
+
# config_path=config_path,
|
122 |
+
# template_video_path=template_video_path,
|
123 |
+
# )
|
124 |
|
125 |
+
|
|
|
|
|
126 |
|
127 |
+
def execute(self, audio: str):
|
128 |
+
|
129 |
+
|
130 |
model = stf_alternative.create_model(
|
131 |
config_path=self.config_path,
|
132 |
checkpoint_path=self.checkpoint_path,
|
133 |
work_root_path=self.work_root_path,
|
134 |
device=self.device,
|
135 |
+
wavlm_path="microsoft/wavlm-large",
|
136 |
)
|
|
|
137 |
|
138 |
+
|
139 |
+
self.template = stf_alternative.Template(
|
140 |
+
model=model,
|
|
|
|
|
141 |
config_path=self.config_path,
|
142 |
+
template_video_path=self.template_video_path,
|
143 |
)
|
|
|
144 |
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
|
147 |
+
# Path("dubbing").mkdir(exist_ok=True)
|
148 |
+
# save_path = os.path.join("dubbing", Path(audio).stem+"--lip.mp4")
|
149 |
+
Path("/tmp/dubbing").mkdir(exist_ok=True)
|
150 |
+
save_path = os.path.join("/tmp/dubbing", Path(audio).stem+"--lip.mp4")
|
151 |
+
|
152 |
reader = iter(self.template._get_reader(num_skip_frames=0))
|
153 |
+
|
154 |
audio_segment = AudioSegment.from_file(audio)
|
155 |
+
pivot = 0
|
156 |
results = []
|
157 |
|
158 |
+
# try:
|
159 |
+
|
160 |
+
# gen_infer = self.template.gen_infer(
|
161 |
+
# audio_segment,
|
162 |
+
# pivot,
|
163 |
+
# )
|
164 |
+
# for idx, (it, chunk) in enumerate(gen_infer, pivot):
|
165 |
+
# frame = next(reader)
|
166 |
+
# composed = self.template.compose(idx, frame, it)
|
167 |
+
# frame_name = f"{idx}".zfill(5)+".jpg"
|
168 |
+
# results.append(it['pred'])
|
169 |
+
# pivot = idx + 1
|
170 |
+
# except StopIteration as e:
|
171 |
+
# pass
|
172 |
+
|
173 |
+
|
174 |
+
with ThreadPoolExecutor(1) as p:
|
175 |
try:
|
176 |
+
|
177 |
gen_infer = self.template.gen_infer_concurrent(
|
178 |
+
p,
|
179 |
+
audio_segment,
|
180 |
+
pivot,
|
181 |
)
|
182 |
+
for idx, (it, chunk) in enumerate(gen_infer, pivot):
|
183 |
frame = next(reader)
|
184 |
composed = self.template.compose(idx, frame, it)
|
185 |
+
frame_name = f"{idx}".zfill(5)+".jpg"
|
186 |
+
results.append(it['pred'])
|
187 |
+
pivot = idx + 1
|
188 |
+
except StopIteration as e:
|
189 |
pass
|
190 |
|
191 |
+
images2video(results, save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
return save_path
|