SyntaSpeech / tasks /tts /dataset_utils.py
yerfor's picture
init
22871e7
import torch.optim
import torch.utils.data
import numpy as np
import torch
import torch.optim
import torch.utils.data
import torch.distributions
from utils.audio.pitch.utils import norm_interp_f0, denorm_f0
from utils.commons.dataset_utils import BaseDataset, collate_1d_or_2d
from utils.commons.indexed_datasets import IndexedDataset
class BaseSpeechDataset(BaseDataset):
def __init__(self, prefix, shuffle=False, items=None, data_dir=None):
super().__init__(shuffle)
from utils.commons.hparams import hparams
self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
self.prefix = prefix
self.hparams = hparams
self.indexed_ds = None
if items is not None:
self.indexed_ds = items
self.sizes = [1] * len(items)
self.avail_idxs = list(range(len(self.sizes)))
else:
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
if prefix == 'test' and len(hparams['test_ids']) > 0:
self.avail_idxs = hparams['test_ids']
else:
self.avail_idxs = list(range(len(self.sizes)))
if prefix == 'train' and hparams['min_frames'] > 0:
self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
self.sizes = [self.sizes[i] for i in self.avail_idxs]
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
hparams = self.hparams
item = self._get_item(index)
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
spec = spec[:max_frames]
ph_token = torch.LongTensor(item['ph_token'][:hparams['max_input_tokens']])
sample = {
"id": index,
"item_name": item['item_name'],
"text": item['txt'],
"txt_token": ph_token,
"mel": spec,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = int(item['spk_id'])
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
text = [s['text'] for s in samples]
txt_tokens = collate_1d_or_2d([s['txt_token'] for s in samples], 0)
mels = collate_1d_or_2d([s['mel'] for s in samples], 0.0)
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
'text': text,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'mels': mels,
'mel_lengths': mel_lengths,
}
if hparams['use_spk_embed']:
spk_embed = torch.stack([s['spk_embed'] for s in samples])
batch['spk_embed'] = spk_embed
if hparams['use_spk_id']:
spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
batch['spk_ids'] = spk_ids
return batch
class FastSpeechDataset(BaseSpeechDataset):
def __getitem__(self, index):
sample = super(FastSpeechDataset, self).__getitem__(index)
item = self._get_item(index)
hparams = self.hparams
mel = sample['mel']
T = mel.shape[0]
ph_token = sample['txt_token']
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T]
if hparams['use_pitch_embed']:
assert 'f0' in item
pitch = torch.LongTensor(item.get(hparams.get('pitch_key', 'pitch')))[:T]
f0, uv = norm_interp_f0(item["f0"][:T])
uv = torch.FloatTensor(uv)
f0 = torch.FloatTensor(f0)
if hparams['pitch_type'] == 'ph':
if "f0_ph" in item:
f0 = torch.FloatTensor(item['f0_ph'])
else:
f0 = denorm_f0(f0, None)
f0_phlevel_sum = torch.zeros_like(ph_token).float().scatter_add(0, mel2ph - 1, f0)
f0_phlevel_num = torch.zeros_like(ph_token).float().scatter_add(
0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
f0_ph = f0_phlevel_sum / f0_phlevel_num
f0, uv = norm_interp_f0(f0_ph)
else:
f0, uv, pitch = None, None, None
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
batch = super(FastSpeechDataset, self).collater(samples)
hparams = self.hparams
if hparams['use_pitch_embed']:
f0 = collate_1d_or_2d([s['f0'] for s in samples], 0.0)
pitch = collate_1d_or_2d([s['pitch'] for s in samples])
uv = collate_1d_or_2d([s['uv'] for s in samples])
else:
f0, uv, pitch = None, None, None
mel2ph = collate_1d_or_2d([s['mel2ph'] for s in samples], 0.0)
batch.update({
'mel2ph': mel2ph,
'pitch': pitch,
'f0': f0,
'uv': uv,
})
return batch
class FastSpeechWordDataset(FastSpeechDataset):
def __getitem__(self, index):
sample = super().__getitem__(index)
item = self._get_item(index)
max_frames = sample['mel'].shape[0]
if 'word' in item:
sample['words'] = item['word']
sample["ph_words"] = item["ph_gb_word"]
sample["word_tokens"] = torch.LongTensor(item["word_token"])
else:
sample['words'] = item['words']
sample["ph_words"] = " ".join(item["ph_words"])
sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
sample["ph2word"] = torch.LongTensor(item['ph2word'][:self.hparams['max_input_tokens']])
sample['dgl_graph'] = item['dgl_graph']
sample['edge_types'] = item['edge_types']
return sample
def collater(self, samples):
samples = [s for s in samples if s is not None]
batch = super().collater(samples)
ph_words = [s['ph_words'] for s in samples]
batch['ph_words'] = ph_words
word_tokens = collate_1d_or_2d([s['word_tokens'] for s in samples], 0)
batch['word_tokens'] = word_tokens
mel2word = collate_1d_or_2d([s['mel2word'] for s in samples], 0)
batch['mel2word'] = mel2word
ph2word = collate_1d_or_2d([s['ph2word'] for s in samples], 0)
batch['ph2word'] = ph2word
batch['words'] = [s['words'] for s in samples]
batch['word_lengths'] = torch.LongTensor([len(s['word_tokens']) for s in samples])
if self.hparams['use_word_input']:
batch['txt_tokens'] = batch['word_tokens']
batch['txt_lengths'] = torch.LongTensor([s['word_tokens'].numel() for s in samples])
batch['mel2ph'] = batch['mel2word']
graph_lst, etypes_lst = [], [] # new features for Graph-based SDP
for s in samples:
graph_lst.append(s['dgl_graph'])
etypes_lst.append(s['edge_types'])
batch.update({
'graph_lst': graph_lst,
'etypes_lst': etypes_lst,
})
return batch