from annotated_text import annotated_text, parameters, annotation from nltk.tokenize import word_tokenize from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import streamlit as st import torch # add the caching decorator and use custom text for spinner @st.cache_resource(show_spinner = "Loading the model...") def label_text(text): if text != "": tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh") model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh") nlp = pipeline("ner", model = model, tokenizer = tokenizer) labels_dict = {0: 'O', 1: 'B-ADAGE', 2: 'I-ADAGE', 3: 'B-ART', 4: 'I-ART', 5: 'B-CARDINAL', 6: 'I-CARDINAL', 7: 'B-CONTACT', 8: 'I-CONTACT', 9: 'B-DATE', 10: 'I-DATE', 11: 'B-DISEASE', 12: 'I-DISEASE', 13: 'B-EVENT', 14: 'I-EVENT', 15: 'B-FACILITY', 16: 'I-FACILITY', 17: 'B-GPE', 18: 'I-GPE', 19: 'B-LANGUAGE', 20: 'I-LANGUAGE', 21: 'B-LAW', 22: 'I-LAW', 23: 'B-LOCATION', 24: 'I-LOCATION', 25: 'B-MISCELLANEOUS', 26: 'I-MISCELLANEOUS', 27: 'B-MONEY', 28: 'I-MONEY', 29: 'B-NON_HUMAN', 30: 'I-NON_HUMAN', 31: 'B-NORP', 32: 'I-NORP', 33: 'B-ORDINAL', 34: 'I-ORDINAL', 35: 'B-ORGANISATION', 36: 'I-ORGANISATION', 37: 'B-PERSON', 38: 'I-PERSON', 39: 'B-PERCENTAGE', 40: 'I-PERCENTAGE', 41: 'B-POSITION', 42: 'I-POSITION', 43: 'B-PRODUCT', 44: 'I-PRODUCT', 45: 'B-PROJECT', 46: 'I-PROJECT', 47: 'B-QUANTITY', 48: 'I-QUANTITY', 49: 'B-TIME', 50: 'I-TIME'} single_sentence_tokens = word_tokenize(text) tokenized_input = tokenizer(single_sentence_tokens, is_split_into_words = True, return_tensors = "pt") tokens = tokenized_input.tokens() output = model(**tokenized_input).logits predictions = torch.argmax(output, dim = 2) # convert label IDs to label names word_ids = tokenized_input.word_ids(batch_index = 0) previous_word_id = None labels = [] for token, word_id, prediction in zip(tokens, word_ids, predictions[0].numpy()): # # Special tokens have a word id that is None. We set the label to -100 so they are # # automatically ignored in the loss function. if word_id is None or word_id == previous_word_id: continue elif word_id != previous_word_id: labels.append(labels_dict[prediction]) previous_word_id = word_id assert len(single_sentence_tokens) == len(labels), "Mismatch between input token and label sizes!" sentence_tokens = [] sentence_labels = [] token_list = [] label_list = [] previous_token = "" previous_label = "" for token, label in zip(single_sentence_tokens, labels): current_token = token current_label = label # starting loop if previous_label == "": previous_token = current_token previous_label = current_label # collecting compound named entities elif (previous_label.startswith("B-")) and (current_label.startswith("I-")): token_list.append(previous_token) label_list.append(previous_label) elif (previous_label.startswith("I-")) and (current_label.startswith("I-")): token_list.append(previous_token) label_list.append(previous_label) elif (previous_label.startswith("I-")) and (not current_label.startswith("I-")): token_list.append(previous_token) label_list.append(previous_label) sentence_tokens.append(token_list) sentence_labels.append(label_list) token_list = [] label_list = [] # collecting single named entities: elif (not previous_label.startswith("I-")) and (not current_label.startswith("I-")): token_list.append(previous_token) label_list.append(previous_label) sentence_tokens.append(token_list) sentence_labels.append(label_list) token_list = [] label_list = [] previous_token = current_token previous_label = current_label token_list.append(previous_token) label_list.append(previous_label) sentence_tokens.append(token_list) sentence_labels.append(label_list) output = [] for sentence_token, sentence_label in zip(sentence_tokens, sentence_labels): if len(sentence_label[0]) > 1: if len(sentence_label) > 1: output.append((" ".join(sentence_token), sentence_label[0].split("-")[1])) else: output.append((sentence_token[0], sentence_label[0].split("-")[1])) else: # output.append((sentence_token[0], sentence_label[0])) output.append(sentence_token[0]) modified_output = [] for element in output: if not isinstance(element, tuple): if element.isalnum(): modified_output.append(' ' + element + ' ') else: modified_output.append(' ' + element + ' ') else: tuple_first = f" {element[0]} " tuple_second = element[1] new_tuple = (tuple_first, tuple_second) modified_output.append(new_tuple) else: return st.markdown("
PLEASE INSERT YOUR TEXT
", unsafe_allow_html = True) return modified_output ######################### #### CREATE SIDEBAR ##### ######################### with open("style.css") as f: css = f.read() st.sidebar.markdown(f'', unsafe_allow_html = True) st.sidebar.markdown("