Spaces:
Building
Building
File size: 17,379 Bytes
d49f7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from animated_drawings.model.bvh import BVH
import numpy as np
import numpy.typing as npt
import math
from animated_drawings.model.joint import Joint
from sklearn.decomposition import PCA
from typing import Tuple, List, Dict
from animated_drawings.model.vectors import Vectors
from animated_drawings.model.quaternions import Quaternions
from animated_drawings.config import MotionConfig, RetargetConfig
x_axis = np.array([1.0, 0.0, 0.0], dtype=np.float32)
z_axis = np.array([0.0, 0.0, 1.0], dtype=np.float32)
class Retargeter():
"""
Retargeter class takes in a motion_cfg file and retarget_cfg file.
Using the specifications listed within retarget_cfg, it converts the motion
specified in motion_cfg into a formal that can be applied to an animated drawing.
It is responsible for project 3D joint locations onto 2D planes, determining resulting
bone orientations, joint 'depths', and root offsets for each frame.
"""
def __init__(self, motion_cfg: MotionConfig, retarget_cfg: RetargetConfig) -> None:
# instantiate the bvh
try:
self.bvh = BVH.from_file(str(motion_cfg.bvh_p), motion_cfg.start_frame_idx, motion_cfg.end_frame_idx)
except Exception as e:
msg = f'Error loading BVH: {e}'
logging.critical(msg)
assert False, msg
# get and cache bvh joint names for later
self.bvh_joint_names = self.bvh.get_joint_names()
# bvh joints defining a set of vectors that skeleton's fwd is perpendicular to
self.forward_perp_vector_joint_names: List[Tuple[str, str]] = motion_cfg.forward_perp_joint_vectors
# override the frame_time, if one was specified within motion_cfg
if motion_cfg.frame_time:
self.bvh.frame_time = motion_cfg.frame_time
# rotate BVH skeleton so up is +Y
if motion_cfg.up == '+y':
pass # no rotation needed
elif motion_cfg.up == '+z':
self.bvh.set_rotation(Quaternions.from_euler_angles('yx', np.array([-90.0, -90.0])))
else:
msg = f'up value not implemented: {motion_cfg.up}'
logging.critical(msg)
assert False, msg
# rotate BVH skeleton so forward is +X
skeleton_fwd: Vectors = self.bvh.get_skeleton_fwd(self.forward_perp_vector_joint_names)
q: Quaternions = Quaternions.rotate_between_vectors(skeleton_fwd, Vectors([1.0, 0.0, 0.0]))
self.bvh.rotation_offset(q)
# scale BVH
self.bvh.set_scale(motion_cfg.scale)
# position above origin
self.bvh.offset(-self.bvh.root_joint.get_world_position())
# adjust bvh skeleton y pos by getting groundplane joint...
try:
groundplane_joint = self.bvh.root_joint.get_transform_by_name(motion_cfg.groundplane_joint)
assert isinstance(groundplane_joint, Joint), f'could not find joint by name: {motion_cfg.groundplane_joint}'
except Exception as e:
msg = f'Error getting groundplane joint: {e}'
logging.warning(msg)
assert False
# ... and moving the bvh so it is on the y=0 plane
bvh_groundplane_y = groundplane_joint.get_world_position()[1]
self.bvh.offset(np.array([0, -bvh_groundplane_y, 0]))
self.joint_positions: npt.NDArray[np.float32]
self.fwd_vectors: npt.NDArray[np.float32]
self.bvh_root_positions: npt.NDArray[np.float32]
self._compute_normalized_joint_positions_and_fwd_vectors()
# cache the starting worldspace location of character's root joint
self.character_start_loc: npt.NDArray[np.float32] = np.array(retarget_cfg.char_start_loc, dtype=np.float32)
# holds world coordinates of character root joint after retargeting
self.char_root_positions: npt.NDArray[np.float32]
# get & save projection planes
self.joint_group_name_to_projection_plane: Dict[ str, npt.NDArray[np.float32]] = {}
self.joint_to_projection_plane: Dict[ str, npt.NDArray[np.float32]] = {}
for joint_projection_group in retarget_cfg.bvh_projection_bodypart_groups:
group_name = joint_projection_group['name']
joint_names = joint_projection_group['bvh_joint_names']
projection_method = joint_projection_group['method']
projection_plane = self._determine_projection_plane_normal(group_name, joint_names, projection_method)
self.joint_group_name_to_projection_plane[joint_projection_group['name']] = projection_plane
for joint_name in joint_projection_group['bvh_joint_names']:
self.joint_to_projection_plane[joint_name] = projection_plane
# map character joint names to its orientations
self.char_joint_to_orientation: Dict[str, npt.NDArray[np.float32]] = {}
# map bvh joint names to its distance to project plane (useful for rendering order)
self.bvh_joint_to_projection_depth: Dict[str, npt.NDArray[np.float32]] = self._compute_depths()
def _compute_normalized_joint_positions_and_fwd_vectors(self) -> None:
"""
Called during initialization.
Computes fwd vector for bvh skeleton at each frame.
Extracts all bvh skeleton joint locations for all frames.
Repositions them so root is above the origin.
Rotates them so skeleton faces along the +X axis.
"""
# get joint positions and forward vectors
self.joint_positions = np.empty([self.bvh.frame_max_num, 3 * self.bvh.joint_num], dtype=np.float32)
self.fwd_vectors = np.empty([self.bvh.frame_max_num, 3], dtype=np.float32)
for frame_idx in range(self.bvh.frame_max_num):
self.bvh.apply_frame(frame_idx)
self.joint_positions[frame_idx] = self.bvh.root_joint.get_chain_worldspace_positions()
self.fwd_vectors[frame_idx] = self.bvh.get_skeleton_fwd(self.forward_perp_vector_joint_names).vs[0]
# reposition over origin
self.bvh_root_positions = self.joint_positions[:, :3]
self.joint_positions = self.joint_positions - np.tile(self.bvh_root_positions, [1, len(self.bvh_joint_names)])
# compute angle between skeleton's forward vector and x axis
v1 = np.tile(np.array([1.0, 0.0], dtype=np.float32), reps=(self.joint_positions.shape[0], 1))
v2 = self.fwd_vectors
dot: npt.NDArray[np.float32] = v1[:, 0]*v2[:, 0] + v1[:, 1]*v2[:, 2]
det: npt.NDArray[np.float32] = v1[:, 0]*v2[:, 2] - v2[:, 0]*v1[:, 1]
angle: npt.NDArray[np.float32] = np.arctan2(det, dot).astype(np.float32)
angle %= 2*np.pi
angle = np.where(angle < 0.0, angle + 2*np.pi, angle)
# rotate the skeleton's joint so it faces +X axis
for idx in range(self.joint_positions.shape[0]):
rot_mat = np.identity(3).astype(np.float32)
rot_mat[0, 0] = math.cos(angle[idx])
rot_mat[0, 2] = math.sin(angle[idx])
rot_mat[2, 0] = -math.sin(angle[idx])
rot_mat[2, 2] = math.cos(angle[idx])
rotated_joints: npt.NDArray[np.float32] = rot_mat @ self.joint_positions[idx].reshape([-1, 3]).T
self.joint_positions[idx] = rotated_joints.T.reshape(self.joint_positions[idx].shape)
def _determine_projection_plane_normal(self, group_name: str, joint_names: List[str], projection_method: str) -> npt.NDArray[np.float32]:
"""
Given a joint_projection_group dictionary object, computes the projection plane normal used for the group.
Called during initialization.
"""
if projection_method == 'frontal':
logging.info(f'{group_name} projection_method is {projection_method}. Using {x_axis}')
return x_axis
elif projection_method == 'sagittal':
logging.info(f'{group_name} projection_method is {projection_method}. Using {z_axis}')
return z_axis
elif projection_method == 'pca':
logging.info(f'{group_name} projection_method is {projection_method}. Running PCA on {joint_names}')
pass # pca code is below
else:
msg = f'bad project method for {group_name}: {projection_method}'
logging.critical(msg)
assert False, msg
# get the xyz locations of joints within this joint_projection_group
joints_idxs = [self.bvh_joint_names.index(joint_name) for joint_name in joint_names]
joints_mask = np.full(self.joint_positions.shape[1], False, dtype=np.bool8)
for idx in joints_idxs:
joints_mask[3*idx:3*(idx+1)] = True
joints_points = self.joint_positions[:, joints_mask]
joints_points = joints_points.reshape([-1, 3])
# do PCA and get 3rd component
pca = PCA()
pca.fit(joints_points)
pc3: npt.NDArray[np.float32] = pca.components_[2] # pyright: ignore[reportGeneralTypeIssues]
# see if it is closer to the x axis or z axis
x_cos_sim: float = np.dot(x_axis, pc3) / (np.linalg.norm(x_axis) * np.linalg.norm(pc3))
z_cos_sim: float = np.dot(z_axis, pc3) / (np.linalg.norm(z_axis) * np.linalg.norm(pc3))
# return close of the two
if abs(x_cos_sim) > abs(z_cos_sim):
logging.info(f'PCA complete. {group_name} using {x_axis}')
return x_axis
else:
logging.info(f'PCA complete. {group_name} using {z_axis}')
return z_axis
def _compute_depths(self) -> Dict[str, npt.NDArray[np.float32]]:
"""
For each BVH joint within bvh_projection_mapping_groups, compute distance to projection plane.
This distance used if the joint is a char_body_segmentation_groups depth_driver.
"""
bvh_joint_to_projection_depth: Dict[str, npt.NDArray[np.float32]] = {}
for joint_name in self.bvh_joint_names:
joint_idx = self.bvh_joint_names.index(joint_name)
joint_xyz = self.joint_positions[:, 3*joint_idx:3*(joint_idx+1)]
try:
projection_plane_normal = self.joint_to_projection_plane[joint_name]
except Exception:
msg = f' error finding projection plane for joint_name: {joint_name}'
logging.info(msg)
continue
# project bone onto 2D plane
if np.array_equal(projection_plane_normal, x_axis):
joint_depths = joint_xyz[:, 0]
elif np.array_equal(projection_plane_normal, z_axis):
joint_depths = joint_xyz[:, 2]
else:
msg = 'error projection_plane_normal'
logging.critical(msg)
assert False, msg
bvh_joint_to_projection_depth[joint_name] = joint_depths
return bvh_joint_to_projection_depth
def scale_root_positions_for_character(self, char_to_bvh_scale: float, projection_bodypart_group_for_offset: str) -> None:
"""
Uses projection plane of projection_bodypart_group_for_offset to determine bvh skeleton's projected root offset.
Scales that offset to account for differences in lengths of character and bvh skeleton limbs.
"""
try:
projection_plane = self.joint_group_name_to_projection_plane[projection_bodypart_group_for_offset]
except Exception as e:
msg = f'Error getting projection plane: {str(e)}'
logging.critical(msg)
assert False, msg
self.char_root_positions = np.empty([self.bvh_root_positions.shape[0], 2], dtype=np.float32)
self.char_root_positions[0] = [0, 0]
for idx in range(1, self.bvh_root_positions.shape[0]):
if np.array_equal(projection_plane, np.array([0.0, 0.0, 1.0])): # if sagittal projection
v1 = self.fwd_vectors[idx] # we're interested in forward motion
else: # if frontal projection
v1 = self.fwd_vectors[idx][::-1]*np.array([-1, 1, -1]) # we're interested in lateral motion
delta = self.bvh_root_positions[idx] - self.bvh_root_positions[idx-1]
# scale root delta for both x and y offsets. Project onto v1 for x offset
self.char_root_positions[idx, 0] = self.char_root_positions[idx-1, 0] + char_to_bvh_scale * np.dot(v1, delta) # x
self.char_root_positions[idx, 1] = self.char_root_positions[idx-1, 1] + char_to_bvh_scale * delta[1] # y
def compute_orientations(self, bvh_prox_joint_name: str, bvh_dist_joint_name: str, char_joint_name: str) -> None:
"""
Calculates the orientation (degrees CCW of +Y axis) of the vector from bvh_prox_joint->bvh_dist_joint using the
projection plane of bvh_dist_joint. Results are saved into a dictionary using char_joint_name as the key.
"""
# get distal end joint
dist_joint = self.bvh.root_joint.get_transform_by_name(bvh_dist_joint_name)
if dist_joint is None or not isinstance(dist_joint, Joint) or dist_joint.name is None:
msg = 'error finding joint {bvh_dist_joint_name}'
logging.critical(msg)
assert False, msg
# get prox joint
prox_joint = self.bvh.root_joint.get_transform_by_name(bvh_prox_joint_name)
if prox_joint is None or not isinstance(prox_joint, Joint) or prox_joint.name is None:
msg = 'joint {bvh_prox_joint_name} has no parent joint, therefore no bone orientation. Returning zero'
logging.info(msg)
self.char_joint_to_orientation[char_joint_name] = np.zeros(self.joint_positions.shape[0], dtype=np.float32)
return
# get joint xyz locations
dist_joint_idx = self.bvh_joint_names.index(dist_joint.name)
dist_joint_xyz = self.joint_positions[:, 3*dist_joint_idx:3*(dist_joint_idx+1)]
prox_joint_idx = self.bvh_joint_names.index(prox_joint.name)
prox_joint_xyz = self.joint_positions[:, 3*prox_joint_idx:3*(prox_joint_idx+1)]
# compute the bone vector
bone_vector = dist_joint_xyz - prox_joint_xyz # type: ignore
# get distal joint's projection plane
try:
projection_plane_normal = self.joint_to_projection_plane[bvh_dist_joint_name]
except Exception:
msg = f' error finding projection plane for bvh_end_joint_name: {bvh_dist_joint_name}'
logging.critical(msg)
assert False, msg
# project bone onto 2D plane
if np.array_equal(projection_plane_normal, x_axis):
projected_bone_xy = np.stack((-bone_vector[:, 2], bone_vector[:, 1]), axis=1)
elif np.array_equal(projection_plane_normal, z_axis):
projected_bone_xy = np.stack((bone_vector[:, 0], bone_vector[:, 1]), axis=1)
else:
msg = 'error projection_plane_normal'
logging.critical(msg)
assert False, msg
# get angles between y axis and bone
projected_bone_xy /= np.expand_dims(np.linalg.norm(projected_bone_xy, axis=1), axis=-1) # norm vector
y_axis = np.tile(np.array([0.0, 1.0]), reps=(projected_bone_xy.shape[0], 1))
at1 = np.arctan2(projected_bone_xy[:, 1], projected_bone_xy[:, 0], dtype=np.float32)
at2 = np.arctan2(y_axis[:, 1], y_axis[:, 0], dtype=np.float32)
theta: npt.NDArray[np.float32] = at1 - at2 # type: ignore
theta = np.degrees(theta) % 360.0
theta = np.where(theta < 0.0, theta + 360, theta)
# save it
self.char_joint_to_orientation[char_joint_name] = np.array(theta)
def get_retargeted_frame_data(self, time: float) -> Tuple[Dict[str, float], Dict[str, float], npt.NDArray[np.float32]]:
"""
Input: time, in seconds, used to select the correct BVH frame.
Calculate the proper frame and, for it, returns:
- orientations, dictionary mapping from character joint names to world orientations (degrees CCW from +Y axis)
- joint_depths, dictionary mapping from BVH skeleton's joint names to distance from joint to projection plane
- root_positions, the position of the character's root at this frame.
"""
frame_idx = int(round(time / self.bvh.frame_time, 0))
if frame_idx < 0:
logging.info(f'invalid frame_idx ({frame_idx}), replacing with 0')
frame_idx = 0
if self.bvh.frame_max_num <= frame_idx:
logging.info(f'invalid frame_idx ({frame_idx}), replacing with last frame {self.bvh.frame_max_num-1}')
frame_idx = self.bvh.frame_max_num-1
orientations = {key: val[frame_idx] for (key, val) in self.char_joint_to_orientation.items()}
joint_depths = {key: val[frame_idx] for (key, val) in self.bvh_joint_to_projection_depth.items()}
root_position = np.array([self.char_root_positions[frame_idx, 0], self.char_root_positions[frame_idx, 1], 0.0], dtype=np.float32)
root_position += self.character_start_loc # offset by character's starting location
return orientations, joint_depths, root_position
|