Spaces:
Paused
Paused
File size: 15,702 Bytes
d49f7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import numpy.typing as npt
from collections import defaultdict
import logging
from typing import List, Dict, Set, Tuple
import scipy.sparse.linalg as spla
import scipy.sparse as sp
csr_matrix = sp._csr.csr_matrix # for typing # pyright: ignore[reportPrivateUsage]
class ARAP():
"""
Implementation of:
Takeo Igarashi and Yuki Igarashi.
"Implementing As-Rigid-As-Possible Shape Manipulation and Surface Flattening."
Journal of Graphics, GPU, and Game Tools, A.K.Peters, Volume 14, Number 1, pp.17-30, ISSN:2151-237X, June, 2009.
https://www-ui.is.s.u-tokyo.ac.jp/~takeo/papers/takeo_jgt09_arapFlattening.pdf
General idea is this:
Start with an an input mesh, comprised of vertices (v in V) and edges (e in E),
and an initial set of pins (or control handle) locations.
Then, given new positions for the pins, find new vertex locations (v' in V')
such that the edges (e' in E') are as similar as possible, in a least squares sense, to the original edges (e in E).
Translation and rotation aren't penalized, but edge scaling is.
Not penalizing rotation makes this tricky, as edges are directed vectors.
Solution involves finding vertex locations twice. First, you do so while allowing both rotation and scaling to be free.
Then you collect the per-edge rotation transforms found by this solution.
During the second solve, you rotate the original edges (e in E) by the rotation matrix prior to computing the difference
between (e' in E') and (e in E). This way, rotation is essentially free, while scaling is not.
"""
def __init__(self, pins_xy: npt.NDArray[np.float32], triangles: List[npt.NDArray[np.int32]], vertices: npt.NDArray[np.float32], w: int = 1000): # noqa: C901
"""
Sets up the matrices needed for later solves.
pins_xy: ndarray [N, 2] specifying initial xy positions of N control points
vertices: ndarray [N, 2] containing xy positions of N vertices. A vertex's order within array is it's vertex ID
triangles: ndarray [N, 3] triplets of vertex IDs that make up triangles comprising the mesh
w: int the weights to use for control points in solve. Default value should work.
"""
self.w = w
self.vertices = np.copy(vertices)
# build a deduplicated list of edge->vertex IDS...
self.e_v_idxs: List[Tuple[np.int32, np.int32]] = []
for v0, v1, v2 in triangles:
self.e_v_idxs.append(tuple(sorted((v0, v1))))
self.e_v_idxs.append(tuple(sorted((v1, v2))))
self.e_v_idxs.append(tuple(sorted((v2, v0))))
self.e_v_idxs = list(set(self.e_v_idxs)) # ...and deduplicate it
# build list of edge vectors
_edge_vectors: List[npt.NDArray[np.float32]] = []
for vi_idx, vj_idx in self.e_v_idxs:
vi = self.vertices[vi_idx]
vj = self.vertices[vj_idx]
_edge_vectors.append(vj - vi)
self.edge_vectors: npt.NDArray[np.float32] = np.array(_edge_vectors)
# get barycentric coordinates of pins, and mask denoting which pins were initially outside the mesh
pins_bc: List[Tuple[Tuple[np.int32, np.float32], Tuple[np.int32, np.float32], Tuple[np.int32, np.float32]]]
self.pin_mask = npt.NDArray[np.bool8]
pins_bc, self.pin_mask = self._xy_to_barycentric_coords(pins_xy, vertices, triangles)
v_vnbr_idxs: Dict[np.int32, Set[np.int32]] = defaultdict(set) # build a dict mapping vertex ID -> neighbor vertex IDs
for v0, v1, v2 in triangles:
v_vnbr_idxs[v0] |= {v1, v2}
v_vnbr_idxs[v1] |= {v2, v0}
v_vnbr_idxs[v2] |= {v0, v1}
self.edge_num = len(self.e_v_idxs)
self.vert_num = len(self.vertices)
self.pin_num = len(pins_xy[self.pin_mask])
self.A1: npt.NDArray[np.float32] = np.zeros([2 * (self.edge_num + self.pin_num), 2 * self.vert_num], dtype=np.float32)
G: npt.NDArray[np.float32] = np.zeros([2 * self.edge_num, 2 * self.vert_num], dtype=np.float32) # holds edge rotation calculations
# populate top half of A1, one row per edge
for k, (vi_idx, vj_idx) in enumerate(self.e_v_idxs):
# initialize self.A1 with 1, -1 denoting beginning and end of x and y dims of vector
self.A1[2*k:2*(k+1), 2*vi_idx:2*(vi_idx+1)] = -np.identity(2)
self.A1[2*k:2*(k+1), 2*vj_idx:2*(vj_idx+1)] = np.identity(2)
# Find the 'neighbor' vertices for this edge: {v_i, v_j,v_r, v_l}
vi_vnbr_idxs: Set[np.int32] = v_vnbr_idxs[vi_idx]
vj_vnbr_idxs: Set[np.int32] = v_vnbr_idxs[vj_idx]
e_vnbr_idxs: List[np.int32] = list(vi_vnbr_idxs.intersection(vj_vnbr_idxs))
e_vnbr_idxs.insert(0, vi_idx)
e_vnbr_idxs.insert(1, vj_idx)
e_vnbr_xys: Tuple[np.float32, np.float32] = tuple([self.vertices[v_idx] for v_idx in e_vnbr_idxs])
_: List[Tuple[float, float]] = []
for v in e_vnbr_xys[1:]:
vx: float = v[0] - e_vnbr_xys[0][0]
vy: float = v[1] - e_vnbr_xys[0][1]
_.extend(((vx, vy), (vy, -vx)))
G_k: npt.NDArray[np.float32] = np.array(_)
G_k_star: npt.NDArray[np.float32] = np.linalg.inv(G_k.T @ G_k) @ G_k.T
e_kx, e_ky = self.edge_vectors[k]
e = np.array([
[e_kx, e_ky],
[e_ky, -e_kx]
], np.float32)
edge_matrix = np.hstack([np.tile(-np.identity(2), (len(e_vnbr_idxs)-1, 1)), np.identity(2*(len(e_vnbr_idxs)-1))])
g = np.dot(G_k_star, edge_matrix)
h = np.dot(e, g)
for h_offset, v_idx in enumerate(e_vnbr_idxs):
self.A1[2*k:2*(k+1), 2*v_idx:2*(v_idx+1)] -= h[:, 2*h_offset:2*(h_offset+1)]
G[2*k:2*(k+1), 2*v_idx:2*(v_idx+1)] = g[:, 2*h_offset:2*(h_offset+1)]
# populate bottom row of A1, one row per constraint-dimension
for pin_idx, pin_bc in enumerate(pins_bc):
for v_idx, v_w in pin_bc:
self.A1[2*self.edge_num + 2*pin_idx , 2*v_idx] = self.w * v_w # x component
self.A1[2*self.edge_num + 2*pin_idx+1, 2*v_idx + 1] = self.w * v_w # y component
A2_top: npt.NDArray[np.float32] = np.zeros([self.edge_num, self.vert_num], dtype=np.float32)
for k, (vi_idx, vj_idx) in enumerate(self.e_v_idxs):
A2_top[k, vi_idx] = -1
A2_top[k, vj_idx] = 1
A2_bot: npt.NDArray[np.float32] = np.zeros([self.pin_num, self.vert_num], dtype=np.float32)
for pin_idx, pin_bc in enumerate(pins_bc):
for v_idx, v_w in pin_bc:
A2_bot[pin_idx, v_idx] = self.w * v_w
self.A2: npt.NDArray[np.float32] = np.vstack([A2_top, A2_bot])
# for speed, convert to sparse matrices and cache for later
self.tA1: csr_matrix = sp.csr_matrix(self.A1.transpose())
self.tA2: csr_matrix = sp.csr_matrix(self.A2.transpose())
self.G: csr_matrix = sp.csr_matrix(G)
# perturbing singular matrix and calling det can trigger overflow warning- ignore it
old_settings = np.seterr(over='ignore')
# ensure tA1xA1 matrix isn't singular and cache sparse repsentation
tA1xA1_dense: npt.NDArray[np.float32] = self.tA1 @ self.A1
while np.linalg.det(tA1xA1_dense) == 0.0:
logging.info('tA1xA1 is singular. perturbing...')
tA1xA1_dense += 0.00000001 * np.identity(tA1xA1_dense.shape[0])
self.tA1xA1: csr_matrix = sp.csr_matrix(tA1xA1_dense)
# ensure tA2xA2 matrix isn't singular and cache sparse repsentation
tA2xA2_dense: npt.NDArray[np.float32] = self.tA2 @ self.A2
while np.linalg.det(tA2xA2_dense) == 0.0:
logging.info('tA2xA2 is singular. perturbing...')
tA2xA2_dense += 0.00000001 * np.identity(tA2xA2_dense.shape[0])
self.tA2xA2: csr_matrix = sp.csr_matrix(tA2xA2_dense)
# revert np overflow warnings behavior
np.seterr(**old_settings)
def solve(self, pins_xy_: npt.NDArray[np.float32]) -> npt.NDArray[np.float64]:
"""
After ARAP has been initialized, pass in new pin xy positions and receive back the new mesh vertex positions
pins *must* be in the same order they were passed in during initialization
pins_xy: ndarray [N, 2] with new pin xy positions
return: ndarray [N, 2], the updated xy locations of each vertex in the mesh
"""
# remove any pins that were orgininally outside the mesh
pins_xy: npt.NDArray[np.float32] = pins_xy_[self.pin_mask] # pyright: ignore[reportGeneralTypeIssues]
assert len(pins_xy) == self.pin_num
self.b1: npt.NDArray[np.float64] = np.hstack([np.zeros([2 * self.edge_num], dtype=np.float64), self.w * pins_xy.reshape([-1, ])])
v1: npt.NDArray[np.float64] = spla.spsolve(self.tA1xA1, self.tA1 @ self.b1.T)
T1: npt.NDArray[np.float64] = self.G @ v1
b2_top = np.empty([self.edge_num, 2], dtype=np.float64)
for idx, e0 in enumerate(self.edge_vectors):
c: np.float64 = T1[2*idx]
s: np.float64 = T1[2*idx + 1]
scale = 1.0 / np.sqrt(c * c + s * s)
c *= scale
s *= scale
T2 = np.asarray(((c, s), (-s, c))) # create rotation matrix
e1 = np.dot(T2, e0) # and rotate old vector to get new
b2_top[idx] = e1
b2 = np.vstack([b2_top, self.w * pins_xy])
b2x = b2[:, 0]
b2y = b2[:, 1]
v2x: npt.NDArray[np.float64] = spla.spsolve(self.tA2xA2, self.tA2 @ b2x)
v2y: npt.NDArray[np.float64] = spla.spsolve(self.tA2xA2, self.tA2 @ b2y)
return np.vstack((v2x, v2y)).T
def _xy_to_barycentric_coords(self,
points: npt.NDArray[np.float32],
vertices: npt.NDArray[np.float32],
triangles: List[npt.NDArray[np.int32]]
) -> Tuple[List[Tuple[Tuple[np.int32, np.float32], Tuple[np.int32, np.float32], Tuple[np.int32, np.float32]]],
npt.NDArray[np.bool8]]:
"""
Given and array containing xy locations and the vertices & triangles making up a mesh,
find the triangle that each points in within and return it's representation using barycentric coordinates.
points: ndarray [N,2] of point xy coords
vertices: ndarray of vertex locations, row position is index id
triangles: ndarraywith ordered vertex ids of vertices that make up each mesh triangle
Is point inside triangle? : https://mathworld.wolfram.com/TriangleInterior.html
Returns a list of barycentric coords for points inside the mesh,
and a list of True/False values indicating whether a given pin was inside the mesh or not.
Needed for removing pins during subsequent solve steps.
"""
def det(u: npt.NDArray[np.float32], v: npt.NDArray[np.float32]) -> npt.NDArray[np.float32]:
""" helper function returns determinents of two [N,2] arrays"""
ux, uy = u[:, 0], u[:, 1]
vx, vy = v[:, 0], v[:, 1]
return ux*vy - uy*vx
tv_locs: npt.NDArray[np.float32] = np.asarray([vertices[t].flatten() for t in triangles]) # triangle->vertex locations, [T x 6] array
v0 = tv_locs[:, :2]
v1 = np.subtract(tv_locs[:, 2:4], v0)
v2 = np.subtract(tv_locs[:, 4: ], v0)
b_coords: List[Tuple[Tuple[np.int32, np.float32], Tuple[np.int32, np.float32], Tuple[np.int32, np.float32]]] = []
pin_mask: List[bool] = []
for p_xy in points:
p_xy = np.expand_dims(p_xy, axis=0)
a = (det(p_xy, v2) - det(v0, v2)) / det(v1, v2)
b = -(det(p_xy, v1) - det(v0, v1)) / det(v1, v2)
# find the indices of triangle containing
in_triangle = np.bitwise_and(np.bitwise_and(a > 0, b > 0), a + b < 1)
containing_t_idxs = np.argwhere(in_triangle)
# if length is zero, check if on triangle(s) perimeters
if not len(containing_t_idxs):
on_triangle_perimeter = np.bitwise_and(np.bitwise_and(a >= 0, b >= 0), a + b <= 1)
containing_t_idxs = np.argwhere(on_triangle_perimeter)
# point is outside mesh. Log a warning and continue
if not len(containing_t_idxs):
msg = f'point {p_xy} not inside or on edge of any triangle in mesh. Skipping it'
print(msg)
logging.warning(msg)
pin_mask.append(False)
continue
# grab the id of first triangle the point is in or on
t_idx = int(containing_t_idxs[0])
vertex_ids = triangles[t_idx] # get ids of verts in triangle
a_xy, b_xy, c_xy = vertices[vertex_ids] # get xy coords of verts
uvw = self._get_barycentric_coords(p_xy, a_xy, b_xy, c_xy) # get barycentric coords
b_coords.append(list(zip(vertex_ids, uvw))) # append to our list # pyright: ignore[reportGeneralTypeIssues]
pin_mask.append(True)
return (b_coords, np.array(pin_mask, dtype=np.bool8))
def _get_barycentric_coords(self,
p: npt.NDArray[np.float32],
a: npt.NDArray[np.float32],
b: npt.NDArray[np.float32],
c: npt.NDArray[np.float32]
) -> npt.NDArray[np.float32]:
"""
As described in Christer Ericson's Real-Time Collision Detection.
p: the input point
a, b, c: the vertices of the triangle
Returns ndarray [u, v, w], the barycentric coordinates of p wrt vertices a, b, c
"""
v0: npt.NDArray[np.float32] = np.subtract(b, a)
v1: npt.NDArray[np.float32] = np.subtract(c, a)
v2: npt.NDArray[np.float32] = np.subtract(p, a)
d00: np.float32 = np.dot(v0, v0)
d01: np.float32 = np.dot(v0, v1)
d11: np.float32 = np.dot(v1, v1)
d20: np.float32 = np.dot(v2, v0)
d21: np.float32 = np.dot(v2, v1)
denom = d00 * d11 - d01 * d01
v: npt.NDArray[np.float32] = (d11 * d20 - d01 * d21) / denom # pyright: ignore[reportGeneralTypeIssues]
w: npt.NDArray[np.float32] = (d00 * d21 - d01 * d20) / denom # pyright: ignore[reportGeneralTypeIssues]
u: npt.NDArray[np.float32] = 1.0 - v - w
return np.array([u, v, w]).squeeze()
def plot_mesh(vertices, triangles, pins_xy):
""" Helper function to visualize mesh deformation outputs """
import matplotlib.pyplot as plt
for tri in triangles:
x_points = []
y_points = []
v0, v1, v2 = tri.tolist()
x_points.append(vertices[v0][0])
y_points.append(vertices[v0][1])
x_points.append(vertices[v1][0])
y_points.append(vertices[v1][1])
x_points.append(vertices[v2][0])
y_points.append(vertices[v2][1])
x_points.append(vertices[v0][0])
y_points.append(vertices[v0][1])
plt.plot(x_points, y_points)
plt.ylim((-15, 15))
plt.xlim((-15, 15))
for pin in pins_xy:
plt.plot(pin[0], pin[1], color='red', marker='o')
plt.show()
|