Spaces:
Paused
Paused
File size: 9,566 Bytes
d49f7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import sys
import requests
import cv2
import json
import numpy as np
from skimage import measure
from scipy import ndimage
from pathlib import Path
import yaml
import logging
def image_to_annotations(img_fn: str, out_dir: str) -> None:
"""
Given the RGB image located at img_fn, runs detection, segmentation, and pose estimation for drawn character within it.
Crops the image and saves texture, mask, and character config files necessary for animation. Writes to out_dir.
Params:
img_fn: path to RGB image
out_dir: directory where outputs will be saved
"""
# create output directory
outdir = Path(out_dir)
outdir.mkdir(exist_ok=True)
# read image
img = cv2.imread(img_fn)
# copy the original image into the output_dir
cv2.imwrite(str(outdir/'image.png'), img)
# ensure it's rgb
if len(img.shape) != 3:
msg = f'image must have 3 channels (rgb). Found {len(img.shape)}'
logging.critical(msg)
assert False, msg
# resize if needed
if np.max(img.shape) > 1000:
scale = 1000 / np.max(img.shape)
img = cv2.resize(img, (round(scale * img.shape[1]), round(scale * img.shape[0])))
# convert to bytes and send to torchserve
img_b = cv2.imencode('.png', img)[1].tobytes()
request_data = {'data': img_b}
resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_detector", files=request_data, verify=False)
if resp is None or resp.status_code >= 300:
raise Exception(f"Failed to get bounding box, please check if the 'docker_torchserve' is running and healthy, resp: {resp}")
detection_results = json.loads(resp.content)
# error check detection_results
if isinstance(detection_results, dict) and 'code' in detection_results.keys() and detection_results['code'] == 404:
assert False, f'Error performing detection. Check that drawn_humanoid_detector.mar was properly downloaded. Response: {detection_results}'
# order results by score, descending
detection_results.sort(key=lambda x: x['score'], reverse=True)
# if no drawn humanoids detected, abort
if len(detection_results) == 0:
msg = 'Could not detect any drawn humanoids in the image. Aborting'
logging.critical(msg)
assert False, msg
# otherwise, report # detected and score of highest.
msg = f'Detected {len(detection_results)} humanoids in image. Using detection with highest score {detection_results[0]["score"]}.'
logging.info(msg)
# calculate the coordinates of the character bounding box
bbox = np.array(detection_results[0]['bbox'])
l, t, r, b = [round(x) for x in bbox]
# dump the bounding box results to file
with open(str(outdir/'bounding_box.yaml'), 'w') as f:
yaml.dump({
'left': l,
'top': t,
'right': r,
'bottom': b
}, f)
# crop the image
cropped = img[t:b, l:r]
# get segmentation mask
mask = segment(cropped)
# send cropped image to pose estimator
data_file = {'data': cv2.imencode('.png', cropped)[1].tobytes()}
resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_pose_estimator", files=data_file, verify=False)
if resp is None or resp.status_code >= 300:
raise Exception(f"Failed to get skeletons, please check if the 'docker_torchserve' is running and healthy, resp: {resp}")
pose_results = json.loads(resp.content)
# error check pose_results
if isinstance(pose_results, dict) and 'code' in pose_results.keys() and pose_results['code'] == 404:
assert False, f'Error performing pose estimation. Check that drawn_humanoid_pose_estimator.mar was properly downloaded. Response: {pose_results}'
# if no skeleton detected, abort
if len(pose_results) == 0:
msg = 'Could not detect any skeletons within the character bounding box. Expected exactly 1. Aborting.'
logging.critical(msg)
assert False, msg
# if more than one skeleton detected,
if 1 < len(pose_results):
msg = f'Detected {len(pose_results)} skeletons with the character bounding box. Expected exactly 1. Aborting.'
logging.critical(msg)
assert False, msg
# get x y coordinates of detection joint keypoints
kpts = np.array(pose_results[0]['keypoints'])[:, :2]
# use them to build character skeleton rig
skeleton = []
skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'root' , 'parent': None})
skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'hip' , 'parent': 'root'})
skeleton.append({'loc' : [round(x) for x in (kpts[5]+kpts[6])/2 ], 'name': 'torso' , 'parent': 'hip'})
skeleton.append({'loc' : [round(x) for x in kpts[0] ], 'name': 'neck' , 'parent': 'torso'})
skeleton.append({'loc' : [round(x) for x in kpts[6] ], 'name': 'right_shoulder', 'parent': 'torso'})
skeleton.append({'loc' : [round(x) for x in kpts[8] ], 'name': 'right_elbow' , 'parent': 'right_shoulder'})
skeleton.append({'loc' : [round(x) for x in kpts[10] ], 'name': 'right_hand' , 'parent': 'right_elbow'})
skeleton.append({'loc' : [round(x) for x in kpts[5] ], 'name': 'left_shoulder' , 'parent': 'torso'})
skeleton.append({'loc' : [round(x) for x in kpts[7] ], 'name': 'left_elbow' , 'parent': 'left_shoulder'})
skeleton.append({'loc' : [round(x) for x in kpts[9] ], 'name': 'left_hand' , 'parent': 'left_elbow'})
skeleton.append({'loc' : [round(x) for x in kpts[12] ], 'name': 'right_hip' , 'parent': 'root'})
skeleton.append({'loc' : [round(x) for x in kpts[14] ], 'name': 'right_knee' , 'parent': 'right_hip'})
skeleton.append({'loc' : [round(x) for x in kpts[16] ], 'name': 'right_foot' , 'parent': 'right_knee'})
skeleton.append({'loc' : [round(x) for x in kpts[11] ], 'name': 'left_hip' , 'parent': 'root'})
skeleton.append({'loc' : [round(x) for x in kpts[13] ], 'name': 'left_knee' , 'parent': 'left_hip'})
skeleton.append({'loc' : [round(x) for x in kpts[15] ], 'name': 'left_foot' , 'parent': 'left_knee'})
# create the character config dictionary
char_cfg = {'skeleton': skeleton, 'height': cropped.shape[0], 'width': cropped.shape[1]}
# convert texture to RGBA and save
cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2BGRA)
cv2.imwrite(str(outdir/'texture.png'), cropped)
# save mask
cv2.imwrite(str(outdir/'mask.png'), mask)
# dump character config to yaml
with open(str(outdir/'char_cfg.yaml'), 'w') as f:
yaml.dump(char_cfg, f)
# create joint viz overlay for inspection purposes
joint_overlay = cropped.copy()
for joint in skeleton:
x, y = joint['loc']
name = joint['name']
cv2.circle(joint_overlay, (int(x), int(y)), 5, (0, 0, 0), 5)
cv2.putText(joint_overlay, name, (int(x), int(y+15)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, 2)
cv2.imwrite(str(outdir/'joint_overlay.png'), joint_overlay)
def segment(img: np.ndarray):
""" threshold """
img = np.min(img, axis=2)
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 8)
img = cv2.bitwise_not(img)
""" morphops """
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=2)
img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel, iterations=2)
""" floodfill """
mask = np.zeros([img.shape[0]+2, img.shape[1]+2], np.uint8)
mask[1:-1, 1:-1] = img.copy()
# im_floodfill is results of floodfill. Starts off all white
im_floodfill = np.full(img.shape, 255, np.uint8)
# choose 10 points along each image side. use as seed for floodfill.
h, w = img.shape[:2]
for x in range(0, w-1, 10):
cv2.floodFill(im_floodfill, mask, (x, 0), 0)
cv2.floodFill(im_floodfill, mask, (x, h-1), 0)
for y in range(0, h-1, 10):
cv2.floodFill(im_floodfill, mask, (0, y), 0)
cv2.floodFill(im_floodfill, mask, (w-1, y), 0)
# make sure edges aren't character. necessary for contour finding
im_floodfill[0, :] = 0
im_floodfill[-1, :] = 0
im_floodfill[:, 0] = 0
im_floodfill[:, -1] = 0
""" retain largest contour """
mask2 = cv2.bitwise_not(im_floodfill)
mask = None
biggest = 0
contours = measure.find_contours(mask2, 0.0)
for c in contours:
x = np.zeros(mask2.T.shape, np.uint8)
cv2.fillPoly(x, [np.int32(c)], 1)
size = len(np.where(x == 1)[0])
if size > biggest:
mask = x
biggest = size
if mask is None:
msg = 'Found no contours within image'
logging.critical(msg)
assert False, msg
mask = ndimage.binary_fill_holes(mask).astype(int)
mask = 255 * mask.astype(np.uint8)
return mask.T
if __name__ == '__main__':
log_dir = Path('./logs')
log_dir.mkdir(exist_ok=True, parents=True)
logging.basicConfig(filename=f'{log_dir}/log.txt', level=logging.DEBUG)
img_fn = sys.argv[1]
out_dir = sys.argv[2]
image_to_annotations(img_fn, out_dir)
|