File size: 9,566 Bytes
d49f7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import sys
import requests
import cv2
import json
import numpy as np
from skimage import measure
from scipy import ndimage
from pathlib import Path
import yaml
import logging


def image_to_annotations(img_fn: str, out_dir: str) -> None:
    """
    Given the RGB image located at img_fn, runs detection, segmentation, and pose estimation for drawn character within it.
    Crops the image and saves texture, mask, and character config files necessary for animation. Writes to out_dir.

    Params:
        img_fn: path to RGB image
        out_dir: directory where outputs will be saved
    """

    # create output directory
    outdir = Path(out_dir)
    outdir.mkdir(exist_ok=True)

    # read image
    img = cv2.imread(img_fn)

    # copy the original image into the output_dir
    cv2.imwrite(str(outdir/'image.png'), img)

    # ensure it's rgb
    if len(img.shape) != 3:
        msg = f'image must have 3 channels (rgb). Found {len(img.shape)}'
        logging.critical(msg)
        assert False, msg

    # resize if needed
    if np.max(img.shape) > 1000:
        scale = 1000 / np.max(img.shape)
        img = cv2.resize(img, (round(scale * img.shape[1]), round(scale * img.shape[0])))

    # convert to bytes and send to torchserve
    img_b = cv2.imencode('.png', img)[1].tobytes()
    request_data = {'data': img_b}
    resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_detector", files=request_data, verify=False)
    if resp is None or resp.status_code >= 300:
        raise Exception(f"Failed to get bounding box, please check if the 'docker_torchserve' is running and healthy, resp: {resp}")

    detection_results = json.loads(resp.content)

    # error check detection_results
    if isinstance(detection_results, dict) and 'code' in detection_results.keys() and detection_results['code'] == 404:
        assert False, f'Error performing detection. Check that drawn_humanoid_detector.mar was properly downloaded. Response: {detection_results}'

    # order results by score, descending
    detection_results.sort(key=lambda x: x['score'], reverse=True)

    # if no drawn humanoids detected, abort
    if len(detection_results) == 0:
        msg = 'Could not detect any drawn humanoids in the image. Aborting'
        logging.critical(msg)
        assert False, msg

    # otherwise, report # detected and score of highest.
    msg = f'Detected {len(detection_results)} humanoids in image. Using detection with highest score {detection_results[0]["score"]}.'
    logging.info(msg)

    # calculate the coordinates of the character bounding box
    bbox = np.array(detection_results[0]['bbox'])
    l, t, r, b = [round(x) for x in bbox]

    # dump the bounding box results to file
    with open(str(outdir/'bounding_box.yaml'), 'w') as f:
        yaml.dump({
            'left': l,
            'top': t,
            'right': r,
            'bottom': b
        }, f)

    # crop the image
    cropped = img[t:b, l:r]

    # get segmentation mask
    mask = segment(cropped)

    # send cropped image to pose estimator
    data_file = {'data': cv2.imencode('.png', cropped)[1].tobytes()}
    resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_pose_estimator", files=data_file, verify=False)
    if resp is None or resp.status_code >= 300:
        raise Exception(f"Failed to get skeletons, please check if the 'docker_torchserve' is running and healthy, resp: {resp}")

    pose_results = json.loads(resp.content)

    # error check pose_results
    if isinstance(pose_results, dict) and 'code' in pose_results.keys() and pose_results['code'] == 404:
        assert False, f'Error performing pose estimation. Check that drawn_humanoid_pose_estimator.mar was properly downloaded. Response: {pose_results}'

    # if no skeleton detected, abort
    if len(pose_results) == 0:
        msg = 'Could not detect any skeletons within the character bounding box. Expected exactly 1. Aborting.'
        logging.critical(msg)
        assert False, msg

    # if more than one skeleton detected,
    if 1 < len(pose_results):
        msg = f'Detected {len(pose_results)} skeletons with the character bounding box. Expected exactly 1. Aborting.'
        logging.critical(msg)
        assert False, msg

    # get x y coordinates of detection joint keypoints
    kpts = np.array(pose_results[0]['keypoints'])[:, :2]

    # use them to build character skeleton rig
    skeleton = []
    skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'root'          , 'parent': None})
    skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'hip'           , 'parent': 'root'})
    skeleton.append({'loc' : [round(x) for x in (kpts[5]+kpts[6])/2  ], 'name': 'torso'         , 'parent': 'hip'})
    skeleton.append({'loc' : [round(x) for x in  kpts[0]             ], 'name': 'neck'          , 'parent': 'torso'})
    skeleton.append({'loc' : [round(x) for x in  kpts[6]             ], 'name': 'right_shoulder', 'parent': 'torso'})
    skeleton.append({'loc' : [round(x) for x in  kpts[8]             ], 'name': 'right_elbow'   , 'parent': 'right_shoulder'})
    skeleton.append({'loc' : [round(x) for x in  kpts[10]            ], 'name': 'right_hand'    , 'parent': 'right_elbow'})
    skeleton.append({'loc' : [round(x) for x in  kpts[5]             ], 'name': 'left_shoulder' , 'parent': 'torso'})
    skeleton.append({'loc' : [round(x) for x in  kpts[7]             ], 'name': 'left_elbow'    , 'parent': 'left_shoulder'})
    skeleton.append({'loc' : [round(x) for x in  kpts[9]             ], 'name': 'left_hand'     , 'parent': 'left_elbow'})
    skeleton.append({'loc' : [round(x) for x in  kpts[12]            ], 'name': 'right_hip'     , 'parent': 'root'})
    skeleton.append({'loc' : [round(x) for x in  kpts[14]            ], 'name': 'right_knee'    , 'parent': 'right_hip'})
    skeleton.append({'loc' : [round(x) for x in  kpts[16]            ], 'name': 'right_foot'    , 'parent': 'right_knee'})
    skeleton.append({'loc' : [round(x) for x in  kpts[11]            ], 'name': 'left_hip'      , 'parent': 'root'})
    skeleton.append({'loc' : [round(x) for x in  kpts[13]            ], 'name': 'left_knee'     , 'parent': 'left_hip'})
    skeleton.append({'loc' : [round(x) for x in  kpts[15]            ], 'name': 'left_foot'     , 'parent': 'left_knee'})

    # create the character config dictionary
    char_cfg = {'skeleton': skeleton, 'height': cropped.shape[0], 'width': cropped.shape[1]}

    # convert texture to RGBA and save
    cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2BGRA)
    cv2.imwrite(str(outdir/'texture.png'), cropped)

    # save mask
    cv2.imwrite(str(outdir/'mask.png'), mask)

    # dump character config to yaml
    with open(str(outdir/'char_cfg.yaml'), 'w') as f:
        yaml.dump(char_cfg, f)

    # create joint viz overlay for inspection purposes
    joint_overlay = cropped.copy()
    for joint in skeleton:
        x, y = joint['loc']
        name = joint['name']
        cv2.circle(joint_overlay, (int(x), int(y)), 5, (0, 0, 0), 5)
        cv2.putText(joint_overlay, name, (int(x), int(y+15)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, 2)
    cv2.imwrite(str(outdir/'joint_overlay.png'), joint_overlay)


def segment(img: np.ndarray):
    """ threshold """
    img = np.min(img, axis=2)
    img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 8)
    img = cv2.bitwise_not(img)

    """ morphops """
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=2)
    img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel, iterations=2)

    """ floodfill """
    mask = np.zeros([img.shape[0]+2, img.shape[1]+2], np.uint8)
    mask[1:-1, 1:-1] = img.copy()

    # im_floodfill is results of floodfill. Starts off all white
    im_floodfill = np.full(img.shape, 255, np.uint8)

    # choose 10 points along each image side. use as seed for floodfill.
    h, w = img.shape[:2]
    for x in range(0, w-1, 10):
        cv2.floodFill(im_floodfill, mask, (x, 0), 0)
        cv2.floodFill(im_floodfill, mask, (x, h-1), 0)
    for y in range(0, h-1, 10):
        cv2.floodFill(im_floodfill, mask, (0, y), 0)
        cv2.floodFill(im_floodfill, mask, (w-1, y), 0)

    # make sure edges aren't character. necessary for contour finding
    im_floodfill[0, :] = 0
    im_floodfill[-1, :] = 0
    im_floodfill[:, 0] = 0
    im_floodfill[:, -1] = 0

    """ retain largest contour """
    mask2 = cv2.bitwise_not(im_floodfill)
    mask = None
    biggest = 0

    contours = measure.find_contours(mask2, 0.0)
    for c in contours:
        x = np.zeros(mask2.T.shape, np.uint8)
        cv2.fillPoly(x, [np.int32(c)], 1)
        size = len(np.where(x == 1)[0])
        if size > biggest:
            mask = x
            biggest = size

    if mask is None:
        msg = 'Found no contours within image'
        logging.critical(msg)
        assert False, msg

    mask = ndimage.binary_fill_holes(mask).astype(int)
    mask = 255 * mask.astype(np.uint8)

    return mask.T


if __name__ == '__main__':
    log_dir = Path('./logs')
    log_dir.mkdir(exist_ok=True, parents=True)
    logging.basicConfig(filename=f'{log_dir}/log.txt', level=logging.DEBUG)

    img_fn = sys.argv[1]
    out_dir = sys.argv[2]
    image_to_annotations(img_fn, out_dir)