# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys import requests import cv2 import json import numpy as np from skimage import measure from scipy import ndimage from pathlib import Path import yaml import logging def image_to_annotations(img_fn: str, out_dir: str) -> None: """ Given the RGB image located at img_fn, runs detection, segmentation, and pose estimation for drawn character within it. Crops the image and saves texture, mask, and character config files necessary for animation. Writes to out_dir. Params: img_fn: path to RGB image out_dir: directory where outputs will be saved """ # create output directory outdir = Path(out_dir) outdir.mkdir(exist_ok=True) # read image img = cv2.imread(img_fn) # copy the original image into the output_dir cv2.imwrite(str(outdir/'image.png'), img) # ensure it's rgb if len(img.shape) != 3: msg = f'image must have 3 channels (rgb). Found {len(img.shape)}' logging.critical(msg) assert False, msg # resize if needed if np.max(img.shape) > 1000: scale = 1000 / np.max(img.shape) img = cv2.resize(img, (round(scale * img.shape[1]), round(scale * img.shape[0]))) # convert to bytes and send to torchserve img_b = cv2.imencode('.png', img)[1].tobytes() request_data = {'data': img_b} resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_detector", files=request_data, verify=False) if resp is None or resp.status_code >= 300: raise Exception(f"Failed to get bounding box, please check if the 'docker_torchserve' is running and healthy, resp: {resp}") detection_results = json.loads(resp.content) # error check detection_results if isinstance(detection_results, dict) and 'code' in detection_results.keys() and detection_results['code'] == 404: assert False, f'Error performing detection. Check that drawn_humanoid_detector.mar was properly downloaded. Response: {detection_results}' # order results by score, descending detection_results.sort(key=lambda x: x['score'], reverse=True) # if no drawn humanoids detected, abort if len(detection_results) == 0: msg = 'Could not detect any drawn humanoids in the image. Aborting' logging.critical(msg) assert False, msg # otherwise, report # detected and score of highest. msg = f'Detected {len(detection_results)} humanoids in image. Using detection with highest score {detection_results[0]["score"]}.' logging.info(msg) # calculate the coordinates of the character bounding box bbox = np.array(detection_results[0]['bbox']) l, t, r, b = [round(x) for x in bbox] # dump the bounding box results to file with open(str(outdir/'bounding_box.yaml'), 'w') as f: yaml.dump({ 'left': l, 'top': t, 'right': r, 'bottom': b }, f) # crop the image cropped = img[t:b, l:r] # get segmentation mask mask = segment(cropped) # send cropped image to pose estimator data_file = {'data': cv2.imencode('.png', cropped)[1].tobytes()} resp = requests.post("http://localhost:8080/predictions/drawn_humanoid_pose_estimator", files=data_file, verify=False) if resp is None or resp.status_code >= 300: raise Exception(f"Failed to get skeletons, please check if the 'docker_torchserve' is running and healthy, resp: {resp}") pose_results = json.loads(resp.content) # error check pose_results if isinstance(pose_results, dict) and 'code' in pose_results.keys() and pose_results['code'] == 404: assert False, f'Error performing pose estimation. Check that drawn_humanoid_pose_estimator.mar was properly downloaded. Response: {pose_results}' # if no skeleton detected, abort if len(pose_results) == 0: msg = 'Could not detect any skeletons within the character bounding box. Expected exactly 1. Aborting.' logging.critical(msg) assert False, msg # if more than one skeleton detected, if 1 < len(pose_results): msg = f'Detected {len(pose_results)} skeletons with the character bounding box. Expected exactly 1. Aborting.' logging.critical(msg) assert False, msg # get x y coordinates of detection joint keypoints kpts = np.array(pose_results[0]['keypoints'])[:, :2] # use them to build character skeleton rig skeleton = [] skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'root' , 'parent': None}) skeleton.append({'loc' : [round(x) for x in (kpts[11]+kpts[12])/2], 'name': 'hip' , 'parent': 'root'}) skeleton.append({'loc' : [round(x) for x in (kpts[5]+kpts[6])/2 ], 'name': 'torso' , 'parent': 'hip'}) skeleton.append({'loc' : [round(x) for x in kpts[0] ], 'name': 'neck' , 'parent': 'torso'}) skeleton.append({'loc' : [round(x) for x in kpts[6] ], 'name': 'right_shoulder', 'parent': 'torso'}) skeleton.append({'loc' : [round(x) for x in kpts[8] ], 'name': 'right_elbow' , 'parent': 'right_shoulder'}) skeleton.append({'loc' : [round(x) for x in kpts[10] ], 'name': 'right_hand' , 'parent': 'right_elbow'}) skeleton.append({'loc' : [round(x) for x in kpts[5] ], 'name': 'left_shoulder' , 'parent': 'torso'}) skeleton.append({'loc' : [round(x) for x in kpts[7] ], 'name': 'left_elbow' , 'parent': 'left_shoulder'}) skeleton.append({'loc' : [round(x) for x in kpts[9] ], 'name': 'left_hand' , 'parent': 'left_elbow'}) skeleton.append({'loc' : [round(x) for x in kpts[12] ], 'name': 'right_hip' , 'parent': 'root'}) skeleton.append({'loc' : [round(x) for x in kpts[14] ], 'name': 'right_knee' , 'parent': 'right_hip'}) skeleton.append({'loc' : [round(x) for x in kpts[16] ], 'name': 'right_foot' , 'parent': 'right_knee'}) skeleton.append({'loc' : [round(x) for x in kpts[11] ], 'name': 'left_hip' , 'parent': 'root'}) skeleton.append({'loc' : [round(x) for x in kpts[13] ], 'name': 'left_knee' , 'parent': 'left_hip'}) skeleton.append({'loc' : [round(x) for x in kpts[15] ], 'name': 'left_foot' , 'parent': 'left_knee'}) # create the character config dictionary char_cfg = {'skeleton': skeleton, 'height': cropped.shape[0], 'width': cropped.shape[1]} # convert texture to RGBA and save cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2BGRA) cv2.imwrite(str(outdir/'texture.png'), cropped) # save mask cv2.imwrite(str(outdir/'mask.png'), mask) # dump character config to yaml with open(str(outdir/'char_cfg.yaml'), 'w') as f: yaml.dump(char_cfg, f) # create joint viz overlay for inspection purposes joint_overlay = cropped.copy() for joint in skeleton: x, y = joint['loc'] name = joint['name'] cv2.circle(joint_overlay, (int(x), int(y)), 5, (0, 0, 0), 5) cv2.putText(joint_overlay, name, (int(x), int(y+15)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, 2) cv2.imwrite(str(outdir/'joint_overlay.png'), joint_overlay) def segment(img: np.ndarray): """ threshold """ img = np.min(img, axis=2) img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 8) img = cv2.bitwise_not(img) """ morphops """ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=2) img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel, iterations=2) """ floodfill """ mask = np.zeros([img.shape[0]+2, img.shape[1]+2], np.uint8) mask[1:-1, 1:-1] = img.copy() # im_floodfill is results of floodfill. Starts off all white im_floodfill = np.full(img.shape, 255, np.uint8) # choose 10 points along each image side. use as seed for floodfill. h, w = img.shape[:2] for x in range(0, w-1, 10): cv2.floodFill(im_floodfill, mask, (x, 0), 0) cv2.floodFill(im_floodfill, mask, (x, h-1), 0) for y in range(0, h-1, 10): cv2.floodFill(im_floodfill, mask, (0, y), 0) cv2.floodFill(im_floodfill, mask, (w-1, y), 0) # make sure edges aren't character. necessary for contour finding im_floodfill[0, :] = 0 im_floodfill[-1, :] = 0 im_floodfill[:, 0] = 0 im_floodfill[:, -1] = 0 """ retain largest contour """ mask2 = cv2.bitwise_not(im_floodfill) mask = None biggest = 0 contours = measure.find_contours(mask2, 0.0) for c in contours: x = np.zeros(mask2.T.shape, np.uint8) cv2.fillPoly(x, [np.int32(c)], 1) size = len(np.where(x == 1)[0]) if size > biggest: mask = x biggest = size if mask is None: msg = 'Found no contours within image' logging.critical(msg) assert False, msg mask = ndimage.binary_fill_holes(mask).astype(int) mask = 255 * mask.astype(np.uint8) return mask.T if __name__ == '__main__': log_dir = Path('./logs') log_dir.mkdir(exist_ok=True, parents=True) logging.basicConfig(filename=f'{log_dir}/log.txt', level=logging.DEBUG) img_fn = sys.argv[1] out_dir = sys.argv[2] image_to_annotations(img_fn, out_dir)