Spaces:
Building
Building
File size: 5,825 Bytes
d49f7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations # so we can refer to class Type inside class
import numpy as np
import numpy.typing as npt
import logging
from typing import Union, Iterable, Tuple
from numbers import Number
from copy import copy
from animated_drawings.utils import TOLERANCE
class Vectors():
"""
Wrapper class around ndarray interpreted as one or more vectors of equal dimensionality
When passing in existing Vectors, new Vectors object will share the underlying nparray, so be careful.
"""
def __init__(self, vs_: Union[Iterable[Union[float, int, Vectors, npt.NDArray[np.float32]]], Vectors]) -> None: # noqa: C901
self.vs: npt.NDArray[np.float32]
# initialize from single ndarray
if isinstance(vs_, np.ndarray):
if len(vs_.shape) == 1:
vs_ = np.expand_dims(vs_, axis=0)
self.vs = vs_
# initialize from tuple or list of numbers
elif isinstance(vs_, (tuple, list)) and isinstance(vs_[0], Number):
try:
vs_ = np.array(vs_)
if len(vs_.shape) == 1:
vs_ = np.expand_dims(vs_, axis=0)
except Exception as e:
msg = f'Error initializing Vectors: {str(e)}'
logging.critical(msg)
assert False, msg
self.vs = vs_
# initialize from tuple or list of ndarrays
elif isinstance(vs_, (tuple, list)) and isinstance(vs_[0], np.ndarray):
try:
vs_ = np.stack(vs_) # pyright: ignore[reportGeneralTypeIssues]
except Exception as e:
msg = f'Error initializing Vectors: {str(e)}'
logging.critical(msg)
assert False, msg
self.vs = vs_ # pyright: ignore[reportGeneralTypeIssues]
# initialize from tuple or list of Vectors
elif isinstance(vs_, (tuple, list)) and isinstance(vs_[0], Vectors):
try:
vs_ = np.stack([v.vs.squeeze() for v in vs_]) # pyright: ignore[reportGeneralTypeIssues]
except Exception as e:
msg = f'Error initializing Vectors: {str(e)}'
logging.critical(msg)
assert False, msg
self.vs = vs_
# initialize from single Vectors
elif isinstance(vs_, Vectors):
self.vs = vs_.vs
else:
msg = 'Vectors must be constructed from Vectors, ndarray, or Tuples/List of floats/ints or Vectors'
logging.critical(msg)
assert False, msg
def norm(self) -> None:
ns: npt.NDArray[np.float64] = np.linalg.norm(self.vs, axis=-1)
if np.min(ns) < TOLERANCE:
logging.info(f"Encountered values close to zero in vector norm. Replacing with {TOLERANCE}")
ns[ns < TOLERANCE] = TOLERANCE
self.vs = self.vs / np.expand_dims(ns, axis=-1)
def cross(self, v2: Vectors) -> Vectors:
""" Cross product of a series of 2 or 3 dimensional vectors. All dimensions of vs must match."""
if self.vs.shape != v2.vs.shape:
msg = f'Cannot cross product different sized vectors: {self.vs.shape} {v2.vs.shape}.'
logging.critical(msg)
assert False, msg
if not self.vs.shape[-1] in [2, 3]:
msg = f'Cannot cross product vectors of size: {self.vs.shape[-1]}. Must be 2 or 3.'
logging.critical(msg)
assert False, msg
return Vectors(np.cross(self.vs, v2.vs))
def perpendicular(self, ccw: bool = True) -> Vectors:
"""
Returns ndarray of vectors perpendicular to the original ones.
Only 2D and 3D vectors are supported.
By default returns the counter clockwise vector, but passing ccw=False returns clockwise
"""
if not self.vs.shape[-1] in [2, 3]:
msg = f'Cannot get perpendicular of vectors of size: {self.vs.shape[-1]}. Must be 2 or 3.'
logging.critical(msg)
assert False, msg
v_up: Vectors = Vectors(np.tile([0.0, 1.0, 0.0], [*self.shape[:-1], 1]))
v_perp = v_up.cross(self)
v_perp.norm()
if not ccw:
v_perp *= -1
return v_perp
def average(self) -> Vectors:
""" Return the average of a collection of vectors, along the first axis"""
return Vectors(np.mean(self.vs, axis=0))
def copy(self) -> Vectors:
return copy(self)
@property
def shape(self) -> Tuple[int, ...]:
return self.vs.shape
@property
def length(self) -> npt.NDArray[np.float32]:
return np.linalg.norm(self.vs, axis=-1).astype(np.float32)
def __mul__(self, val: float) -> Vectors:
return Vectors(self.vs * val)
def __truediv__(self, scale: Union[int, float]) -> Vectors:
return Vectors(self.vs / scale)
def __sub__(self, other: Vectors) -> Vectors:
if self.vs.shape != other.vs.shape:
msg = 'Attempted to subtract Vectors with different dimensions'
logging.critical(msg)
assert False, msg
return Vectors(np.subtract(self.vs, other.vs))
def __add__(self, other: Vectors) -> Vectors:
if self.vs.shape != other.vs.shape:
msg = 'Attempted to add Vectors with different dimensions'
logging.critical(msg)
assert False, msg
return Vectors(np.add(self.vs, other.vs))
def __copy__(self) -> Vectors:
return Vectors(self)
def __str__(self) -> str:
return f"Vectors({str(self.vs)})"
def __repr__(self) -> str:
return f"Vectors({str(self.vs)})"
|