File size: 6,817 Bytes
fff6648
 
 
 
 
 
 
 
 
 
 
 
4ce7dc8
fff6648
 
5c78a42
cabb3d1
 
 
 
 
 
39f7a33
fff6648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabb3d1
 
 
 
fff6648
cabb3d1
 
fff6648
cabb3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff6648
 
 
 
cabb3d1
fff6648
 
 
 
 
 
 
 
 
 
 
 
 
39f7a33
fff6648
 
 
 
 
fa3c9b4
fff6648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cabb3d1
fff6648
 
cabb3d1
 
 
fff6648
 
 
699a7a1
fff6648
 
cabb3d1
fff6648
39f7a33
fff6648
39f7a33
fff6648
 
39f7a33
fff6648
 
 
 
 
cabb3d1
fff6648
 
 
cabb3d1
 
fff6648
39f7a33
fff6648
 
cabb3d1
fff6648
 
39f7a33
cabb3d1
fff6648
 
 
 
39f7a33
fff6648
 
 
 
 
39f7a33
 
fff6648
 
 
39f7a33
 
fff6648
39f7a33
fff6648
cabb3d1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import torch
import argparse
import gradio as gr
import openai
from zipfile import ZipFile
import requests
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import langid
import traceback
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Global variables for preloaded resources
en_base_speaker_tts = None
zh_base_speaker_tts = None
tone_color_converter = None
target_se = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Function to download and extract checkpoints
def download_and_extract_checkpoints():
    zip_url = "https://huggingface.co/camenduru/OpenVoice/resolve/main/checkpoints_1226.zip"
    zip_path = "checkpoints.zip"

    if not os.path.exists("checkpoints"):
        print("Downloading checkpoints...")
        response = requests.get(zip_url, stream=True)
        with open(zip_path, "wb") as zip_file:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    zip_file.write(chunk)
        print("Extracting checkpoints...")
        with ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(".")
        os.remove(zip_path)
        print("Checkpoints are ready.")

# Initialize models and resources
def initialize_resources():
    global en_base_speaker_tts, zh_base_speaker_tts, tone_color_converter, target_se
    print("Initializing resources...")

    # Download and extract checkpoints
    download_and_extract_checkpoints()

    # Define paths to checkpoints
    en_ckpt_base = 'checkpoints/base_speakers/EN'
    zh_ckpt_base = 'checkpoints/base_speakers/ZH'
    ckpt_converter = 'checkpoints/converter'

    # Load TTS models
    en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
    en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
    zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
    zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')

    # Load tone color converter
    tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
    tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

    # Load speaker embeddings
    en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
    zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)

    # Extract speaker embedding from the default Mickey Mouse audio
    default_speaker_audio = "resources/output.wav"
    try:
        target_se, _ = se_extractor.get_se(
            default_speaker_audio,
            tone_color_converter,
            target_dir='processed',
            vad=True
        )
        print("Speaker embedding extracted successfully.")
    except Exception as e:
        raise RuntimeError(f"Failed to extract speaker embedding from {default_speaker_audio}: {str(e)}")

initialize_resources()

# Supported languages
supported_languages = ['zh', 'en']

# Predict function
def predict(audio_file_pth, agree):
    text_hint = ''
    synthesized_audio_path = None

    # Agree with the terms
    if not agree:
        text_hint += '[ERROR] Please accept the Terms & Conditions!\n'
        return (text_hint, None)

    # Check if audio file is provided
    if audio_file_pth is not None:
        speaker_wav = audio_file_pth
    else:
        text_hint += "[ERROR] Please provide an audio file.\n"
        return (text_hint, None)

    # Transcribe audio to text using OpenAI Whisper
    try:
        with open(speaker_wav, 'rb') as audio_file:
            transcription_response = openai.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file,
                response_format='text'
            )
        input_text = transcription_response.strip()
        print(f"Transcribed Text: {input_text}")
    except Exception as e:
        text_hint += f"[ERROR] Transcription failed: {str(e)}\n"
        return (text_hint, None)

    if len(input_text) == 0:
        text_hint += "[ERROR] No speech detected in the audio.\n"
        return (text_hint, None)

    # Detect language
    language_predicted = langid.classify(input_text)[0].strip()
    print(f"Detected language: {language_predicted}")

    if language_predicted not in supported_languages:
        text_hint += f"[ERROR] Unsupported language: {language_predicted}\n"
        return (text_hint, None)

    # Select TTS model
    tts_model = zh_base_speaker_tts if language_predicted == "zh" else en_base_speaker_tts
    language = 'Chinese' if language_predicted == "zh" else 'English'

    # Generate response using OpenAI GPT-4
    try:
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are Mickey Mouse, a cheerful character who responds to children's queries."},
                {"role": "user", "content": input_text}
            ]
        )
        reply_text = response['choices'][0]['message']['content'].strip()
        print(f"GPT-4 Reply: {reply_text}")
    except Exception as e:
        text_hint += f"[ERROR] GPT-4 response failed: {str(e)}\n"
        return (text_hint, None)

    # Synthesize reply text to audio
    try:
        src_path = os.path.join(output_dir, 'tmp_reply.wav')
        tts_model.tts(reply_text, src_path, speaker='default', language=language)

        save_path = os.path.join(output_dir, 'output_reply.wav')
        tone_color_converter.convert(
            audio_src_path=src_path,
            src_se=target_se,
            tgt_se=target_se,
            output_path=save_path
        )

        text_hint += "Response generated successfully.\n"
        synthesized_audio_path = save_path
    except Exception as e:
        text_hint += f"[ERROR] Synthesis failed: {str(e)}\n"
        traceback.print_exc()
        return (text_hint, None)

    return (text_hint, synthesized_audio_path)

# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
    gr.Markdown("# Mickey Mouse Voice Assistant")

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(source="microphone", type="filepath", label="Record Your Voice")
            tos_checkbox = gr.Checkbox(label="Agree to Terms & Conditions", value=False)
            submit_button = gr.Button("Send")

        with gr.Column():
            info_output = gr.Textbox(label="Info", interactive=False, lines=4)
            audio_output = gr.Audio(label="Mickey's Response", interactive=False, autoplay=True)

    submit_button.click(predict, inputs=[audio_input, tos_checkbox], outputs=[info_output, audio_output])

demo.queue()
demo.launch(
    server_name="0.0.0.0",
    server_port=int(os.environ.get("PORT", 7860)),
    debug=True,
    show_api=True,
    share=False
)