Spaces:
Sleeping
Sleeping
File size: 6,817 Bytes
fff6648 4ce7dc8 fff6648 5c78a42 cabb3d1 39f7a33 fff6648 cabb3d1 fff6648 cabb3d1 fff6648 cabb3d1 fff6648 cabb3d1 fff6648 39f7a33 fff6648 fa3c9b4 fff6648 cabb3d1 fff6648 cabb3d1 fff6648 699a7a1 fff6648 cabb3d1 fff6648 39f7a33 fff6648 39f7a33 fff6648 39f7a33 fff6648 cabb3d1 fff6648 cabb3d1 fff6648 39f7a33 fff6648 cabb3d1 fff6648 39f7a33 cabb3d1 fff6648 39f7a33 fff6648 39f7a33 fff6648 39f7a33 fff6648 39f7a33 fff6648 cabb3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import torch
import argparse
import gradio as gr
import openai
from zipfile import ZipFile
import requests
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import langid
import traceback
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Global variables for preloaded resources
en_base_speaker_tts = None
zh_base_speaker_tts = None
tone_color_converter = None
target_se = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Function to download and extract checkpoints
def download_and_extract_checkpoints():
zip_url = "https://huggingface.co/camenduru/OpenVoice/resolve/main/checkpoints_1226.zip"
zip_path = "checkpoints.zip"
if not os.path.exists("checkpoints"):
print("Downloading checkpoints...")
response = requests.get(zip_url, stream=True)
with open(zip_path, "wb") as zip_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
zip_file.write(chunk)
print("Extracting checkpoints...")
with ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(".")
os.remove(zip_path)
print("Checkpoints are ready.")
# Initialize models and resources
def initialize_resources():
global en_base_speaker_tts, zh_base_speaker_tts, tone_color_converter, target_se
print("Initializing resources...")
# Download and extract checkpoints
download_and_extract_checkpoints()
# Define paths to checkpoints
en_ckpt_base = 'checkpoints/base_speakers/EN'
zh_ckpt_base = 'checkpoints/base_speakers/ZH'
ckpt_converter = 'checkpoints/converter'
# Load TTS models
en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')
# Load tone color converter
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
# Load speaker embeddings
en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)
# Extract speaker embedding from the default Mickey Mouse audio
default_speaker_audio = "resources/output.wav"
try:
target_se, _ = se_extractor.get_se(
default_speaker_audio,
tone_color_converter,
target_dir='processed',
vad=True
)
print("Speaker embedding extracted successfully.")
except Exception as e:
raise RuntimeError(f"Failed to extract speaker embedding from {default_speaker_audio}: {str(e)}")
initialize_resources()
# Supported languages
supported_languages = ['zh', 'en']
# Predict function
def predict(audio_file_pth, agree):
text_hint = ''
synthesized_audio_path = None
# Agree with the terms
if not agree:
text_hint += '[ERROR] Please accept the Terms & Conditions!\n'
return (text_hint, None)
# Check if audio file is provided
if audio_file_pth is not None:
speaker_wav = audio_file_pth
else:
text_hint += "[ERROR] Please provide an audio file.\n"
return (text_hint, None)
# Transcribe audio to text using OpenAI Whisper
try:
with open(speaker_wav, 'rb') as audio_file:
transcription_response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format='text'
)
input_text = transcription_response.strip()
print(f"Transcribed Text: {input_text}")
except Exception as e:
text_hint += f"[ERROR] Transcription failed: {str(e)}\n"
return (text_hint, None)
if len(input_text) == 0:
text_hint += "[ERROR] No speech detected in the audio.\n"
return (text_hint, None)
# Detect language
language_predicted = langid.classify(input_text)[0].strip()
print(f"Detected language: {language_predicted}")
if language_predicted not in supported_languages:
text_hint += f"[ERROR] Unsupported language: {language_predicted}\n"
return (text_hint, None)
# Select TTS model
tts_model = zh_base_speaker_tts if language_predicted == "zh" else en_base_speaker_tts
language = 'Chinese' if language_predicted == "zh" else 'English'
# Generate response using OpenAI GPT-4
try:
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are Mickey Mouse, a cheerful character who responds to children's queries."},
{"role": "user", "content": input_text}
]
)
reply_text = response['choices'][0]['message']['content'].strip()
print(f"GPT-4 Reply: {reply_text}")
except Exception as e:
text_hint += f"[ERROR] GPT-4 response failed: {str(e)}\n"
return (text_hint, None)
# Synthesize reply text to audio
try:
src_path = os.path.join(output_dir, 'tmp_reply.wav')
tts_model.tts(reply_text, src_path, speaker='default', language=language)
save_path = os.path.join(output_dir, 'output_reply.wav')
tone_color_converter.convert(
audio_src_path=src_path,
src_se=target_se,
tgt_se=target_se,
output_path=save_path
)
text_hint += "Response generated successfully.\n"
synthesized_audio_path = save_path
except Exception as e:
text_hint += f"[ERROR] Synthesis failed: {str(e)}\n"
traceback.print_exc()
return (text_hint, None)
return (text_hint, synthesized_audio_path)
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown("# Mickey Mouse Voice Assistant")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(source="microphone", type="filepath", label="Record Your Voice")
tos_checkbox = gr.Checkbox(label="Agree to Terms & Conditions", value=False)
submit_button = gr.Button("Send")
with gr.Column():
info_output = gr.Textbox(label="Info", interactive=False, lines=4)
audio_output = gr.Audio(label="Mickey's Response", interactive=False, autoplay=True)
submit_button.click(predict, inputs=[audio_input, tos_checkbox], outputs=[info_output, audio_output])
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
debug=True,
show_api=True,
share=False
) |