Spaces:
Sleeping
Sleeping
File size: 6,962 Bytes
fff6648 a4d2895 fff6648 4ce7dc8 a4d2895 5e84b34 a4d2895 fff6648 5c78a42 fff6648 17043fb cabb3d1 17043fb cabb3d1 17043fb fff6648 a4d2895 fff6648 fa3c9b4 fff6648 17043fb fff6648 17043fb fff6648 699a7a1 fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 17043fb fff6648 cabb3d1 fff6648 17043fb cabb3d1 fff6648 a4d2895 5e84b34 a4d2895 5e84b34 a4d2895 5e84b34 fff6648 a4d2895 3c5d4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import torch
import argparse
import openai
from zipfile import ZipFile
import requests
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import langid
import traceback
from dotenv import load_dotenv
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
import uvicorn
# Load environment variables
load_dotenv()
def download_and_extract_checkpoints():
zip_url = "https://huggingface.co/camenduru/OpenVoice/resolve/main/checkpoints_1226.zip"
zip_path = "checkpoints.zip"
if not os.path.exists("checkpoints"):
print("Downloading checkpoints...")
response = requests.get(zip_url, stream=True)
with open(zip_path, "wb") as zip_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
zip_file.write(chunk)
print("Extracting checkpoints...")
with ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(".")
os.remove(zip_path)
print("Checkpoints are ready.")
# Call the function to ensure checkpoints are available
download_and_extract_checkpoints()
# Initialize OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise ValueError("Please set the OPENAI_API_KEY environment variable.")
en_ckpt_base = 'checkpoints/base_speakers/EN'
zh_ckpt_base = 'checkpoints/base_speakers/ZH'
ckpt_converter = 'checkpoints/converter'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)
en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
en_source_style_se = torch.load(f'{en_ckpt_base}/en_style_se.pth').to(device)
zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)
default_speaker_audio = "resources/output.wav"
try:
target_se, _ = se_extractor.get_se(
default_speaker_audio,
tone_color_converter,
target_dir='processed',
vad=True
)
print("Speaker embedding extracted successfully.")
except Exception as e:
raise RuntimeError(f"Failed to extract speaker embedding from {default_speaker_audio}: {str(e)}")
supported_languages = ['zh', 'en']
def predict(audio_file_pth, agree):
text_hint = ''
synthesized_audio_path = None
if not agree:
text_hint += '[ERROR] Please accept the Terms & Conditions!\n'
return (text_hint, None)
if audio_file_pth is not None:
speaker_wav = audio_file_pth
else:
text_hint += "[ERROR] Please provide your voice as an audio file.\n"
return (text_hint, None)
# Transcribe audio to text using OpenAI Whisper
try:
with open(speaker_wav, 'rb') as audio_file:
transcription_response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format='text'
)
input_text = transcription_response.strip()
print(f"Transcribed Text: {input_text}")
except Exception as e:
text_hint += f"[ERROR] Transcription failed: {str(e)}\n"
return (text_hint, None)
if len(input_text) == 0:
text_hint += "[ERROR] No speech detected in the audio.\n"
return (text_hint, None)
language_predicted = langid.classify(input_text)[0].strip()
print(f"Detected language: {language_predicted}")
if language_predicted not in supported_languages:
text_hint += f"[ERROR] The detected language '{language_predicted}' is not supported. Supported languages are: {supported_languages}\n"
return (text_hint, None)
if language_predicted == "zh":
tts_model = zh_base_speaker_tts
language = 'Chinese'
speaker_style = 'default'
else:
tts_model = en_base_speaker_tts
language = 'English'
speaker_style = 'default'
try:
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are Mickey Mouse, a friendly and cheerful character who responds to children's queries in a simple and engaging manner. Please keep your response up to 200 characters."},
{"role": "user", "content": input_text}
],
max_tokens=200,
n=1,
stop=None,
temperature=0.7,
)
reply_text = response.choices[0].message.content.strip()
print(f"GPT-4 Reply: {reply_text}")
except Exception as e:
text_hint += f"[ERROR] Failed to get response from OpenAI GPT-4: {str(e)}\n"
return (text_hint, None)
try:
src_path = os.path.join(output_dir, 'tmp_reply.wav')
tts_model.tts(reply_text, src_path, speaker=speaker_style, language=language)
print(f"Audio synthesized and saved to {src_path}")
save_path = os.path.join(output_dir, 'output_reply.wav')
tone_color_converter.convert(
audio_src_path=src_path,
src_se=en_source_default_se if language == 'English' else zh_source_se,
tgt_se=target_se,
output_path=save_path,
message="@MickeyMouse"
)
print(f"Tone color conversion completed and saved to {save_path}")
text_hint += "Response generated successfully.\n"
synthesized_audio_path = save_path
except Exception as e:
text_hint += f"[ERROR] Failed to synthesize audio: {str(e)}\n"
traceback.print_exc()
return (text_hint, None)
return (text_hint, synthesized_audio_path)
app = FastAPI()
# Mount the 'outputs' directory to serve static files
app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs")
@app.post("/predict")
async def predict_endpoint(agree: bool = Form(...), audio_file: UploadFile = File(...)):
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
audio_path = os.path.join(temp_dir, audio_file.filename)
with open(audio_path, "wb") as f:
f.write(await audio_file.read())
info, audio_output_path = predict(audio_path, agree)
if audio_output_path:
audio_url = f"/outputs/{os.path.basename(audio_output_path)}"
return {"info": info, "audio_path": audio_url}
else:
return {"info": info, "audio_path": None}, 400
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860))) |