Spaces:
Running
Running
File size: 4,279 Bytes
b9be4e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import cv2
import numpy as np
from scipy.signal import savgol_filter
def kalman_filter(inputs: np.array,
process_noise: float = 0.03,
measure_noise: float = 0.01,
):
""" OpenCV - Kalman Filter
https://blog.csdn.net/angelfish91/article/details/61768575
https://blog.csdn.net/qq_23981335/article/details/82968422
"""
assert inputs.ndim == 2, "inputs should be 2-dim np.array"
'''
它有3个输入参数,
dynam_params:状态空间的维数,这里为2;
measure_param:测量值的维数,这里也为2;
control_params:控制向量的维数,默认为0。由于这里该模型中并没有控制变量,因此也为0。
'''
kalman = cv2.KalmanFilter(2,2)
kalman.measurementMatrix = np.array([[1,0],[0,1]],np.float32)
kalman.transitionMatrix = np.array([[1,0],[0,1]], np.float32)
kalman.processNoiseCov = np.array([[1,0],[0,1]], np.float32) * process_noise
kalman.measurementNoiseCov = np.array([[1,0],[0,1]], np.float32) * measure_noise
'''
kalman.measurementNoiseCov为测量系统的协方差矩阵,方差越小,预测结果越接近测量值,
kalman.processNoiseCov为模型系统的噪声,噪声越大,预测结果越不稳定,越容易接近模型系统预测值,且单步变化越大,
相反,若噪声小,则预测结果与上个计算结果相差不大。
'''
kalman.statePre = np.array([[inputs[0][0]],
[inputs[0][1]]])
'''
Kalman Filtering
'''
outputs = np.zeros_like(inputs)
for i in range(len(inputs)):
mes = np.reshape(inputs[i,:],(2,1))
x = kalman.correct(mes)
y = kalman.predict()
outputs[i] = np.squeeze(y)
# print (kalman.statePost[0],kalman.statePost[1])
# print (kalman.statePre[0],kalman.statePre[1])
# print ('measurement:\t',mes[0],mes[1])
# print ('correct:\t',x[0],x[1])
# print ('predict:\t',y[0],y[1])
# print ('='*30)
return outputs
def kalman_filter_landmark(landmarks: np.array,
process_noise: float = 0.03,
measure_noise: float = 0.01,
):
""" Kalman Filter for Landmarks
:param process_noise: large means unstable and close to model predictions
:param measure_noise: small means close to measurement
"""
print('[Using Kalman Filter for Landmark Smoothing, process_noise=%f, measure_noise=%f]' %
(process_noise, measure_noise))
'''
landmarks: (#frames, key, xy)
'''
assert landmarks.ndim == 3, 'landmarks should be 3-dim np.array'
assert landmarks.dtype == 'float32', 'landmarks dtype should be float32'
for s1 in range(landmarks.shape[1]):
landmarks[:, s1] = kalman_filter(landmarks[:, s1],
process_noise,
measure_noise)
return landmarks
def savgol_filter_landmark(landmarks: np.array,
window_length: int = 25,
poly_order: int = 2,
):
""" Savgol Filter for Landmarks
https://blog.csdn.net/kaever/article/details/105520941
"""
print('[Using Savgol Filter for Landmark Smoothing, window_length=%d, poly_order=%d]' %
(window_length, poly_order))
'''
landmarks: (#frames, key, xy)
'''
assert landmarks.ndim == 3, 'landmarks should be 3-dim np.array'
assert landmarks.dtype == 'float32', 'landmarks dtype should be float32'
assert window_length % 2 == 1, 'window_length should be odd'
for s1 in range(landmarks.shape[1]):
for s2 in range(landmarks.shape[2]):
landmarks[:, s1, s2] = savgol_filter(landmarks[:, s1, s2],
window_length,
poly_order)
return landmarks
if __name__ == '__main__':
pos = np.array([
[10, 50],
[12, 49],
[11, 52],
[13, 52.2],
[12.9, 50]], np.float32)
print(pos)
pos_filtered = kalman_filter(pos)
print(pos)
print(pos_filtered) |