File size: 7,419 Bytes
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import cv2
import numpy as np
from skimage import transform as trans


def get_center(points):
    x = [p[0] for p in points]
    y = [p[1] for p in points]
    centroid = (sum(x) / len(points), sum(y) / len(points))
    return np.array([centroid])


def extract_five_lmk(lmk):
    x = lmk[..., :2]
    left_eye = get_center(x[36:42])
    right_eye = get_center(x[42:48])
    nose = x[30:31]
    left_mouth = x[48:49]
    right_mouth = x[54:55]
    x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
    return x


set1 = np.array(
    [
        [41.125, 50.75],
        [71.75, 49.4375],
        [49.875, 73.0625],
        [45.9375, 87.9375],
        [70.4375, 87.9375],
    ],
    dtype=np.float32,
)

arcface_src = np.array(
    [
        [38.2946, 51.6963],
        [73.5318, 51.5014],
        [56.0252, 71.7366],
        [41.5493, 92.3655],
        [70.7299, 92.2041],
    ],
    dtype=np.float32,
)


ffhq = np.array(
    [
        [192.98138, 239.94708],
        [318.90277, 240.1936],
        [256.63416, 314.01935],
        [201.26117, 371.41043],
        [313.08905, 371.15118],
    ],
    dtype=np.float32,
)

mtcnn = np.array(
    [
        [40.95041, 52.341854],
        [70.90203, 52.17619],
        [56.02142, 69.376114],
        [43.716904, 86.910675],
        [68.52042, 86.77348],
    ],
    dtype=np.float32,
)

arcface_src = np.expand_dims(arcface_src, axis=0)
set1 = np.expand_dims(set1, axis=0)
ffhq = np.expand_dims(ffhq, axis=0)
mtcnn = np.expand_dims(mtcnn, axis=0)


# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode="set1"):
    assert lmk.shape == (5, 2)
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float("inf")
    if mode == "arcface":
        if image_size == 112:
            src = arcface_src
        else:
            src = float(image_size) / 112 * arcface_src
    elif mode == "set1":
        if image_size == 112:
            src = set1
        else:
            src = float(image_size) / 112 * set1
    elif mode == "ffhq":
        if image_size == 512:
            src = ffhq
        else:
            src = float(image_size) / 512 * ffhq
    elif mode == "mtcnn":
        if image_size == 112:
            src = mtcnn
        else:
            src = float(image_size) / 112 * mtcnn
    else:
        print("no mode like {}".format(mode))
        exit()
    for i in np.arange(src.shape[0]):
        tform.estimate(lmk, src[i])
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def estimate_norm_any(lmk_from, lmk_to, image_size=112):
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk_from, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float("inf")
    src = lmk_to[np.newaxis, ...]
    for i in np.arange(src.shape[0]):
        tform.estimate(lmk_from, src[i])
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def norm_crop(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
    M, pose_index = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
    return warped


def norm_crop_with_M(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
    M, pose_index = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
    return warped, M


def square_crop(im, S):
    if im.shape[0] > im.shape[1]:
        height = S
        width = int(float(im.shape[1]) / im.shape[0] * S)
        scale = float(S) / im.shape[0]
    else:
        width = S
        height = int(float(im.shape[0]) / im.shape[1] * S)
        scale = float(S) / im.shape[1]
    resized_im = cv2.resize(im, (width, height))
    det_im = np.zeros((S, S, 3), dtype=np.uint8)
    det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
    return det_im, scale


def transform(data, center, output_size, scale, rotation):
    scale_ratio = scale
    rot = float(rotation) * np.pi / 180.0
    # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
    t1 = trans.SimilarityTransform(scale=scale_ratio)
    cx = center[0] * scale_ratio
    cy = center[1] * scale_ratio
    t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
    t3 = trans.SimilarityTransform(rotation=rot)
    t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
    t = t1 + t2 + t3 + t4
    M = t.params[0:2]
    cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
    return cropped, M


def trans_points2d(pts, M):
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        # print('new_pt', new_pt.shape, new_pt)
        new_pts[i] = new_pt[0:2]

    return new_pts


def trans_points3d(pts, M):
    scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
    # print(scale)
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        # print('new_pt', new_pt.shape, new_pt)
        new_pts[i][0:2] = new_pt[0:2]
        new_pts[i][2] = pts[i][2] * scale

    return new_pts


def trans_points(pts, M):
    if pts.shape[1] == 2:
        return trans_points2d(pts, M)
    else:
        return trans_points3d(pts, M)


def paste_back(img, mat, ori_img):
    mat_rev = np.zeros([2, 3])
    div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
    mat_rev[0][0] = mat[1][1] / div1
    mat_rev[0][1] = -mat[0][1] / div1
    mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
    div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
    mat_rev[1][0] = mat[1][0] / div2
    mat_rev[1][1] = -mat[0][0] / div2
    mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2

    img_shape = (ori_img.shape[1], ori_img.shape[0])

    img = cv2.warpAffine(img, mat_rev, img_shape)
    img_white = np.full((256, 256), 255, dtype=float)
    img_white = cv2.warpAffine(img_white, mat_rev, img_shape)
    img_white[img_white > 20] = 255
    img_mask = img_white
    kernel = np.ones((40, 40), np.uint8)
    img_mask = cv2.erode(img_mask, kernel, iterations=2)
    kernel_size = (20, 20)
    blur_size = tuple(2 * j + 1 for j in kernel_size)
    img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
    img_mask /= 255
    img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
    ori_img = img_mask * img + (1 - img_mask) * ori_img
    ori_img = ori_img.astype(np.uint8)
    return ori_img