gavinyuan
add: PIPNet, arcface
b9be4e6
raw
history blame
7.42 kB
import cv2
import numpy as np
from skimage import transform as trans
def get_center(points):
x = [p[0] for p in points]
y = [p[1] for p in points]
centroid = (sum(x) / len(points), sum(y) / len(points))
return np.array([centroid])
def extract_five_lmk(lmk):
x = lmk[..., :2]
left_eye = get_center(x[36:42])
right_eye = get_center(x[42:48])
nose = x[30:31]
left_mouth = x[48:49]
right_mouth = x[54:55]
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
return x
set1 = np.array(
[
[41.125, 50.75],
[71.75, 49.4375],
[49.875, 73.0625],
[45.9375, 87.9375],
[70.4375, 87.9375],
],
dtype=np.float32,
)
arcface_src = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
],
dtype=np.float32,
)
ffhq = np.array(
[
[192.98138, 239.94708],
[318.90277, 240.1936],
[256.63416, 314.01935],
[201.26117, 371.41043],
[313.08905, 371.15118],
],
dtype=np.float32,
)
mtcnn = np.array(
[
[40.95041, 52.341854],
[70.90203, 52.17619],
[56.02142, 69.376114],
[43.716904, 86.910675],
[68.52042, 86.77348],
],
dtype=np.float32,
)
arcface_src = np.expand_dims(arcface_src, axis=0)
set1 = np.expand_dims(set1, axis=0)
ffhq = np.expand_dims(ffhq, axis=0)
mtcnn = np.expand_dims(mtcnn, axis=0)
# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode="set1"):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float("inf")
if mode == "arcface":
if image_size == 112:
src = arcface_src
else:
src = float(image_size) / 112 * arcface_src
elif mode == "set1":
if image_size == 112:
src = set1
else:
src = float(image_size) / 112 * set1
elif mode == "ffhq":
if image_size == 512:
src = ffhq
else:
src = float(image_size) / 512 * ffhq
elif mode == "mtcnn":
if image_size == 112:
src = mtcnn
else:
src = float(image_size) / 112 * mtcnn
else:
print("no mode like {}".format(mode))
exit()
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def estimate_norm_any(lmk_from, lmk_to, image_size=112):
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk_from, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float("inf")
src = lmk_to[np.newaxis, ...]
for i in np.arange(src.shape[0]):
tform.estimate(lmk_from, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def norm_crop(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
M, pose_index = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
return warped
def norm_crop_with_M(img, landmark, image_size=112, mode="arcface", borderValue=0.0):
M, pose_index = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue)
return warped, M
def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
return det_im, scale
def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
return cropped, M
def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
new_pt = np.dot(M, new_pt)
# print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]
return new_pts
def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
# print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
new_pt = np.dot(M, new_pt)
# print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale
return new_pts
def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)
def paste_back(img, mat, ori_img):
mat_rev = np.zeros([2, 3])
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
mat_rev[0][0] = mat[1][1] / div1
mat_rev[0][1] = -mat[0][1] / div1
mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
mat_rev[1][0] = mat[1][0] / div2
mat_rev[1][1] = -mat[0][0] / div2
mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
img_shape = (ori_img.shape[1], ori_img.shape[0])
img = cv2.warpAffine(img, mat_rev, img_shape)
img_white = np.full((256, 256), 255, dtype=float)
img_white = cv2.warpAffine(img_white, mat_rev, img_shape)
img_white[img_white > 20] = 255
img_mask = img_white
kernel = np.ones((40, 40), np.uint8)
img_mask = cv2.erode(img_mask, kernel, iterations=2)
kernel_size = (20, 20)
blur_size = tuple(2 * j + 1 for j in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
img_mask /= 255
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
ori_img = img_mask * img + (1 - img_mask) * ori_img
ori_img = ori_img.astype(np.uint8)
return ori_img