gavinyuan
add: PIPNet, arcface
b9be4e6
raw
history blame
3.94 kB
import os
import cv2
import numpy as np
from PIL import Image
import glob
import torch
import tqdm
import shutil
import argparse
from third_party.GPEN.face_enhancement import FaceEnhancement
make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
class GPENImageInfer(object):
def __init__(self, device):
super(GPENImageInfer, self).__init__()
model = {
"name": "GPEN-BFR-512",
"in_size": 512,
"out_size": 512,
"channel_multiplier": 2,
"narrow": 1,
}
faceenhancer = FaceEnhancement(
base_dir=make_abs_path('./'),
use_sr=True,
in_size=model["in_size"],
out_size=model["out_size"],
model=model["name"],
channel_multiplier=model["channel_multiplier"],
narrow=model["narrow"],
device=device,
)
self.faceenhancer = faceenhancer
def image_infer(self, in_img: np.ndarray):
"""
:param in_img: np.ndarray, (H,W,BGR), in [0,255]
:return: out_img: np.ndarray, (H,W,BGR), in [0,255]
"""
h, w, _ = in_img.shape
out_img, orig_faces, enhanced_faces = self.faceenhancer.process(in_img)
out_img = cv2.resize(out_img, (w, h))
return out_img
def ndarray_infer(self, in_ndarray: np.ndarray,
save_folder: str = 'demo_images/out/',
save_name: str = 'reen.png',
):
"""
:param in_ndarray: np.ndarray, (N,H,W,BGR), in [0,255]
:param save_folder: not used
:param save_name: not used
:return: out_ndarray: np.ndarray, (N,H,W,BGR), in [0,255]
"""
B, H, W, C = in_ndarray.shape
out_ndarray = np.zeros_like(in_ndarray, dtype=np.uint8) # (N,H,W,BGR)
for b_idx in range(B):
single_img = in_ndarray[b_idx]
out_img = self.image_infer(single_img) # (H,W,BGR), in [0,255]
out_ndarray[b_idx] = out_img
return out_ndarray
def batch_infer(self, in_batch: torch.Tensor,
save_folder: str = 'demo_images/out/',
save_name: str = 'reen.png',
save_batch_idx: int = 0,
):
"""
:param in_batch: (N,RGB,H,W), in [-1,1]
:return: out_batch: (N,RGB,H,W), in [-1,1]
"""
B, C, H, W = in_batch.shape
device = in_batch.device
in_batch = ((in_batch + 1.) * 127.5).permute(0, 2, 3, 1)
in_batch = in_batch.cpu().numpy().astype(np.uint8) # (N,H,W,RGB), in [0,255]
in_batch = in_batch[:, :, :, ::-1] # (N,H,W,BGR)
out_batch = np.zeros_like(in_batch, dtype=np.uint8) # (N,H,W,BGR)
for b_idx in range(B):
single_img = in_batch[b_idx]
out_img = self.image_infer(single_img) # (H,W,BGR), in [0,255]
out_batch[b_idx] = out_img[:, :, ::-1]
if save_batch_idx is not None and b_idx == save_batch_idx:
cv2.imwrite(os.path.join(save_folder, save_name), out_img)
out_batch = torch.FloatTensor(out_batch).to(device)
out_batch = out_batch / 127.5 - 1. # (N,H,W,RGB)
out_batch = out_batch.permute(0, 3, 1, 2) # (N,RGB,H,W)
out_batch = out_batch.clamp(-1, 1)
return out_batch
if __name__ == '__main__':
gpen = GPENImageInfer()
in_folder = 'examples/imgs/'
img_list = os.listdir(in_folder)
for img_name in img_list:
if 'gpen' in img_name:
continue
in_path = os.path.join(in_folder, img_name)
out_path = in_path.replace('.png', '_gpen.png')
out_path = in_path.replace('.jpg', '_gpen.jpg')
im = cv2.imread(in_path, cv2.IMREAD_COLOR) # BGR
img = gpen.image_infer(im)
cv2.imwrite(out_path, img)