gavinyuan
update: GPEN weights
fbf97aa
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
from third_party.bisenet.bisenet import BiSeNet
from third_party.GPEN.infer_image import GPENImageInfer
make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
class Trick(object):
def __init__(self):
self.gpen_model = None
self.mouth_helper = None
@staticmethod
def get_any_mask(img, par=None, normalized=False):
# [0, 'background', 1 'skin', 2 'l_brow', 3 'r_brow', 4 'l_eye', 5 'r_eye',
# 6 'eye_g', 7 'l_ear', 8 'r_ear', 9 'ear_r', 10 'nose', 11 'mouth', 12 'u_lip',
# 13 'l_lip', 14 'neck', 15 'neck_l', 16 'cloth', 17 'hair', 18 'hat']
ori_h, ori_w = img.shape[2], img.shape[3]
with torch.no_grad():
img = F.interpolate(img, size=512, mode="nearest", )
if not normalized:
img = img * 0.5 + 0.5
img = img.sub(vgg_mean.detach()).div(vgg_std.detach())
out = global_bisenet(img)[0]
parsing = out.softmax(1).argmax(1)
mask = torch.zeros_like(parsing)
for p in par:
mask = mask + ((parsing == p).float())
mask = mask.unsqueeze(1)
mask = F.interpolate(mask, size=(ori_h, ori_w), mode="bilinear", align_corners=True)
return mask
@staticmethod
def finetune_mask(facial_mask: np.ndarray, lmk_98: np.ndarray = None):
assert facial_mask.shape[1] == 256
facial_mask = (facial_mask * 255).astype(np.uint8)
# h_min = lmk_98[33:41, 0].min() + 20
h_min = 80
facial_mask = cv2.dilate(facial_mask, (40, 40), iterations=1)
facial_mask[:h_min] = 0 # black
facial_mask[255 - 20:] = 0
kernel_size = (20, 20)
blur_size = tuple(2 * j + 1 for j in kernel_size)
facial_mask = cv2.GaussianBlur(facial_mask, blur_size, 0)
return facial_mask.astype(np.float32) / 255
@staticmethod
def smooth_mask(mask_tensor: torch.Tensor):
mask_tensor, _ = global_smooth_mask(mask_tensor)
return mask_tensor
@staticmethod
def tensor_to_arr(tensor):
return ((tensor + 1.) * 127.5).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
@staticmethod
def arr_to_tensor(arr, norm: bool = True):
tensor = torch.tensor(arr, dtype=torch.float).to(global_device) / 255 # in [0,1]
tensor = (tensor - 0.5) / 0.5 if norm else tensor # in [-1,1]
tensor = tensor.permute(0, 3, 1, 2)
return tensor
def gpen(self, img_np: np.ndarray, use_gpen=True):
if not use_gpen:
return img_np
if self.gpen_model is None:
self.gpen_model = GPENImageInfer(device=global_device)
img_np = self.gpen_model.image_infer(img_np)
return img_np
def finetune_mouth(self, i_s, i_t, i_r):
if self.mouth_helper is None:
self.load_mouth_helper()
helper_face = self.mouth_helper(i_s, i_t)[0]
i_r_mouth_mask = self.get_any_mask(i_r, par=[11, 12, 13]) # (B,1,H,W)
''' dilate and blur by cv2 '''
i_r_mouth_mask = self.tensor_to_arr(i_r_mouth_mask)[0] # (H,W,C)
i_r_mouth_mask = cv2.dilate(i_r_mouth_mask, (20, 20), iterations=1)
kernel_size = (5, 5)
blur_size = tuple(2 * j + 1 for j in kernel_size)
i_r_mouth_mask = cv2.GaussianBlur(i_r_mouth_mask, blur_size, 0) # (H,W,C)
i_r_mouth_mask = i_r_mouth_mask.squeeze()[None, :, :, None] # (1,H,W,1)
i_r_mouth_mask = self.arr_to_tensor(i_r_mouth_mask, norm=False) # in [0,1]
return helper_face * i_r_mouth_mask + i_r * (1 - i_r_mouth_mask)
def load_mouth_helper(self):
from modules.networks.faceshifter import FSGenerator
# mouth_helper_pl = EvaluatorFaceShifter(
# load_path="/apdcephfs/share_1290939/gavinyuan/out/triplet10w_34/epoch=13-step=737999.ckpt",
# pt_path=make_abs_path("../ffplus/extracted_ckpt/G_t34_helper_post.pth"),
# benchmark=None,
# demo_folder=None,
# )
pt_path = make_abs_path("../weights/extracted/G_t34_helper_post.pth")
self.mouth_helper = FSGenerator(
make_abs_path("../weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"),
mouth_net_param={"use": False},
in_size=256,
downup=False,
)
self.mouth_helper.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
self.mouth_helper.eval()
print("[Mouth helper] loaded.")
""" From MegaFS: https://github.com/zyainfal/One-Shot-Face-Swapping-on-Megapixels/tree/main/inference """
class SoftErosion(nn.Module):
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
super(SoftErosion, self).__init__()
r = kernel_size // 2
self.padding = r
self.iterations = iterations
self.threshold = threshold
# Create kernel
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
kernel = dist.max() - dist
kernel /= kernel.sum()
kernel = kernel.view(1, 1, *kernel.shape)
self.register_buffer('weight', kernel)
def forward(self, x):
x = x.float()
for i in range(self.iterations - 1):
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)
mask = x >= self.threshold
x[mask] = 1.0
x[~mask] /= x[~mask].max()
return x, mask
if torch.cuda.is_available():
global_device = torch.device(0)
else:
global_device = torch.device('cpu')
vgg_mean = torch.tensor([[[0.485]], [[0.456]], [[0.406]]],
requires_grad=False, device=global_device)
vgg_std = torch.tensor([[[0.229]], [[0.224]], [[0.225]]],
requires_grad=False, device=global_device)
def load_bisenet():
bisenet_model = BiSeNet(n_classes=19)
bisenet_model.load_state_dict(
torch.load(make_abs_path("../weights/bisenet/79999_iter.pth",), map_location="cpu")
)
bisenet_model.eval()
bisenet_model = bisenet_model.to(global_device)
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).to(global_device)
print('[Global] bisenet loaded.')
return bisenet_model, smooth_mask
global_bisenet, global_smooth_mask = load_bisenet()