gavinyuan
update: app.py, gpen for video
1d86bdc
import numpy as np
import cv2
from PIL import Image
# from TDDFA_V2.FaceBoxes import FaceBoxes
# from TDDFA_V2.TDDFA import TDDFA
def get_5_from_98(lmk):
lefteye = (lmk[60] + lmk[64] + lmk[96]) / 3 # lmk[96]
righteye = (lmk[68] + lmk[72] + lmk[97]) / 3 # lmk[97]
nose = lmk[54]
leftmouth = lmk[76]
rightmouth = lmk[82]
return np.array([lefteye, righteye, nose, leftmouth, rightmouth])
def get_center(points):
x = [p[0] for p in points]
y = [p[1] for p in points]
centroid = (sum(x) / len(points), sum(y) / len(points))
return np.array([centroid])
def get_lmk(img, tddfa, face_boxes):
# 仅接受一个人的图像
boxes = face_boxes(img)
n = len(boxes)
if n < 1:
return None
param_lst, roi_box_lst = tddfa(img, boxes)
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=False)
x = ver_lst[0].transpose(1, 0)[..., :2]
left_eye = get_center(x[36:42])
right_eye = get_center(x[42:48])
nose = x[30:31]
left_mouth = x[48:49]
right_mouth = x[54:55]
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
return x
def get_landmark_once(img, gpu_mode=False):
tddfa = TDDFA(
gpu_mode=gpu_mode,
arch="resnet",
checkpoint_fp="./TDDFA_V2/weights/resnet22.pth",
bfm_fp="TDDFA_V2/configs/bfm_noneck_v3.pkl",
size=120,
num_params=62,
)
face_boxes = FaceBoxes()
boxes = face_boxes(img)
n = len(boxes)
if n < 1:
return None
param_lst, roi_box_lst = tddfa(img, boxes)
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=False)
x = ver_lst[0].transpose(1, 0)[..., :2]
left_eye = get_center(x[36:42])
right_eye = get_center(x[42:48])
nose = x[30:31]
left_mouth = x[48:49]
right_mouth = x[54:55]
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0)
return x
def get_detector(gpu_mode=False):
tddfa = TDDFA(
gpu_mode=gpu_mode,
arch="resnet",
checkpoint_fp="./TDDFA_V2/weights/resnet22.pth",
bfm_fp="TDDFA_V2/configs/bfm_noneck_v3.pkl",
size=120,
num_params=62,
)
face_boxes = FaceBoxes()
return tddfa, face_boxes
def save(x, trick=None, use_gpen=False):
""" Paste img to ori_img """
img, mat, ori_img, save_path, img_mask = x
if mat is None:
print('[Warning] mat is None.')
ori_img = ori_img.astype(np.uint8)
Image.fromarray(ori_img).save(save_path)
return
H, W = img.shape[0], img.shape[1] # (256,256) or (512,512)
mat_rev = np.zeros([2, 3])
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
mat_rev[0][0] = mat[1][1] / div1
mat_rev[0][1] = -mat[0][1] / div1
mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
mat_rev[1][0] = mat[1][0] / div2
mat_rev[1][1] = -mat[0][0] / div2
mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
img_shape = (ori_img.shape[1], ori_img.shape[0]) # (h,w)
img = cv2.warpAffine(img, mat_rev, img_shape)
if img_mask is None:
''' hanbang version of paste masks '''
img_white = np.full((H, W), 255, dtype=float)
img_white = cv2.warpAffine(img_white, mat_rev, img_shape)
img_white[img_white > 20] = 255
img_mask = img_white
kernel = np.ones((40, 40), np.uint8)
img_mask = cv2.erode(img_mask, kernel, iterations=2)
kernel_size = (20, 20)
blur_size = tuple(2 * j + 1 for j in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
img_mask /= 255
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
else:
''' yuange version of paste masks '''
img_mask = cv2.warpAffine(img_mask, mat_rev, img_shape)
img_mask = np.expand_dims(img_mask, axis=-1)
ori_img = img_mask * img + (1 - img_mask) * ori_img
ori_img = ori_img.astype(np.uint8)
if trick is not None:
ori_img = trick.gpen(ori_img, use_gpen)
Image.fromarray(ori_img).save(save_path)
# img_mask = np.array((img_mask * 255), dtype=np.uint8).squeeze()
# Image.fromarray(img_mask).save('img_mask.jpg')