Spaces:
Running
Running
gavinyuan
commited on
Commit
•
de68d44
1
Parent(s):
d252b8a
add: app.py
Browse files
app.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import glob
|
4 |
+
import shutil
|
5 |
+
from pathlib import Path
|
6 |
+
from multiprocessing.pool import Pool
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
from torchvision import transforms
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
from PIL import Image
|
15 |
+
import tqdm
|
16 |
+
|
17 |
+
# from modules.networks.faceshifter import FSGenerator
|
18 |
+
# from inference.alignment import norm_crop, norm_crop_with_M, paste_back
|
19 |
+
# from inference.utils import save, get_5_from_98, get_detector, get_lmk
|
20 |
+
# from inference.PIPNet.lib.tools import get_lmk_model, demo_image
|
21 |
+
# from inference.landmark_smooth import kalman_filter_landmark, savgol_filter_landmark
|
22 |
+
# from tricks import Trick
|
23 |
+
|
24 |
+
# make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
|
25 |
+
#
|
26 |
+
#
|
27 |
+
# fs_model_name = 'faceshifter'
|
28 |
+
# in_size = 512
|
29 |
+
#
|
30 |
+
# mouth_net_param = {
|
31 |
+
# "use": True,
|
32 |
+
# "feature_dim": 128,
|
33 |
+
# "crop_param": (28, 56, 84, 112),
|
34 |
+
# "weight_path": "../../modules/third_party/arcface/weights/mouth_net_28_56_84_112.pth",
|
35 |
+
# }
|
36 |
+
# trick = Trick()
|
37 |
+
#
|
38 |
+
# T = transforms.Compose(
|
39 |
+
# [
|
40 |
+
# transforms.ToTensor(),
|
41 |
+
# transforms.Normalize(0.5, 0.5),
|
42 |
+
# ]
|
43 |
+
# )
|
44 |
+
# tensor2pil_transform = transforms.ToPILImage()
|
45 |
+
#
|
46 |
+
#
|
47 |
+
# def extract_generator(ckpt: str, pt: str):
|
48 |
+
# print(f'[extract_generator] loading ckpt...')
|
49 |
+
# from trainer.faceshifter.faceshifter_pl import FaceshifterPL512, FaceshifterPL
|
50 |
+
# import yaml
|
51 |
+
# with open(make_abs_path('../../trainer/faceshifter/config.yaml'), 'r') as f:
|
52 |
+
# config = yaml.load(f, Loader=yaml.FullLoader)
|
53 |
+
# config['mouth_net'] = mouth_net_param
|
54 |
+
#
|
55 |
+
# if in_size == 256:
|
56 |
+
# net = FaceshifterPL(n_layers=3, num_D=3, config=config)
|
57 |
+
# elif in_size == 512:
|
58 |
+
# net = FaceshifterPL512(n_layers=3, num_D=3, config=config, verbose=False)
|
59 |
+
# else:
|
60 |
+
# raise ValueError('Not supported in_size.')
|
61 |
+
# checkpoint = torch.load(ckpt, map_location="cpu", )
|
62 |
+
# net.load_state_dict(checkpoint["state_dict"], strict=False)
|
63 |
+
# net.eval()
|
64 |
+
#
|
65 |
+
# G = net.generator
|
66 |
+
# torch.save(G.state_dict(), pt)
|
67 |
+
# print(f'[extract_generator] extracted from {ckpt}, pth saved to {pt}')
|
68 |
+
#
|
69 |
+
#
|
70 |
+
# ''' load model '''
|
71 |
+
# if fs_model_name == 'faceshifter':
|
72 |
+
# # pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t38.pth")
|
73 |
+
# # pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_6.pth")
|
74 |
+
# # ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_6/epoch=3-step=128999.ckpt"
|
75 |
+
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_4.pth")
|
76 |
+
# ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_4/epoch=2-step=185999.ckpt"
|
77 |
+
# if not os.path.exists(pt_path) or 't512' in pt_path:
|
78 |
+
# extract_generator(ckpt_path, pt_path)
|
79 |
+
# fs_model = FSGenerator(
|
80 |
+
# make_abs_path("../../modules/third_party/arcface/weights/ms1mv3_arcface_r100_fp16/backbone.pth"),
|
81 |
+
# mouth_net_param=mouth_net_param,
|
82 |
+
# in_size=in_size,
|
83 |
+
# downup=in_size == 512,
|
84 |
+
# )
|
85 |
+
# fs_model.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
|
86 |
+
# fs_model.eval()
|
87 |
+
#
|
88 |
+
# @torch.no_grad()
|
89 |
+
# def infer_batch_to_img(i_s, i_t, post: bool = False):
|
90 |
+
# i_r = fs_model(i_s, i_t)[0] # x, id_vector, att
|
91 |
+
#
|
92 |
+
# if post:
|
93 |
+
# target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
|
94 |
+
# target_hair_mask = trick.smooth_mask(target_hair_mask)
|
95 |
+
# i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
|
96 |
+
# i_r = trick.finetune_mouth(i_s, i_t, i_r) if in_size == 256 else i_r
|
97 |
+
#
|
98 |
+
# img_r = trick.tensor_to_arr(i_r)[0]
|
99 |
+
# return img_r
|
100 |
+
#
|
101 |
+
# elif fs_model_name == 'simswap_triplet' or fs_model_name == 'simswap_vanilla':
|
102 |
+
# from modules.networks.simswap import Generator_Adain_Upsample
|
103 |
+
# sw_model = Generator_Adain_Upsample(
|
104 |
+
# input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False,
|
105 |
+
# mouth_net_param=mouth_net_param
|
106 |
+
# )
|
107 |
+
# if fs_model_name == 'simswap_triplet':
|
108 |
+
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_st5.pth")
|
109 |
+
# ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
|
110 |
+
# "simswap_triplet_5/epoch=12-step=782999.ckpt")
|
111 |
+
# elif fs_model_name == 'simswap_vanilla':
|
112 |
+
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_tmp_sv4_off.pth")
|
113 |
+
# ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
|
114 |
+
# "simswap_vanilla_4/epoch=694-step=1487999.ckpt")
|
115 |
+
# else:
|
116 |
+
# pt_path = None
|
117 |
+
# ckpt_path = None
|
118 |
+
# sw_model.load_state_dict(torch.load(pt_path, "cpu"), strict=False)
|
119 |
+
# sw_model.eval()
|
120 |
+
# fs_model = sw_model
|
121 |
+
#
|
122 |
+
# from trainer.simswap.simswap_pl import SimSwapPL
|
123 |
+
# import yaml
|
124 |
+
# with open(make_abs_path('../../trainer/simswap/config.yaml'), 'r') as f:
|
125 |
+
# config = yaml.load(f, Loader=yaml.FullLoader)
|
126 |
+
# config['mouth_net'] = mouth_net_param
|
127 |
+
# net = SimSwapPL(config=config, use_official_arc='off' in pt_path)
|
128 |
+
#
|
129 |
+
# checkpoint = torch.load(ckpt_path, map_location="cpu")
|
130 |
+
# net.load_state_dict(checkpoint["state_dict"], strict=False)
|
131 |
+
# net.eval()
|
132 |
+
# sw_mouth_net = net.mouth_net # maybe None
|
133 |
+
# sw_netArc = net.netArc
|
134 |
+
# fs_model = fs_model.cuda()
|
135 |
+
# sw_mouth_net = sw_mouth_net.cuda() if sw_mouth_net is not None else sw_mouth_net
|
136 |
+
# sw_netArc = sw_netArc.cuda()
|
137 |
+
#
|
138 |
+
# @torch.no_grad()
|
139 |
+
# def infer_batch_to_img(i_s, i_t, post: bool = False):
|
140 |
+
# i_r = fs_model(source=i_s, target=i_t, net_arc=sw_netArc, mouth_net=sw_mouth_net,)
|
141 |
+
# if post:
|
142 |
+
# target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
|
143 |
+
# target_hair_mask = trick.smooth_mask(target_hair_mask)
|
144 |
+
# i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
|
145 |
+
# i_r = i_r.clamp(-1, 1)
|
146 |
+
# i_r = trick.tensor_to_arr(i_r)[0]
|
147 |
+
# return i_r
|
148 |
+
#
|
149 |
+
# elif fs_model_name == 'simswap_official':
|
150 |
+
# from simswap.image_infer import SimSwapOfficialImageInfer
|
151 |
+
# fs_model = SimSwapOfficialImageInfer()
|
152 |
+
# pt_path = 'Simswap Official'
|
153 |
+
# mouth_net_param = {
|
154 |
+
# "use": False
|
155 |
+
# }
|
156 |
+
#
|
157 |
+
# @torch.no_grad()
|
158 |
+
# def infer_batch_to_img(i_s, i_t):
|
159 |
+
# i_r = fs_model.image_infer(source_tensor=i_s, target_tensor=i_t)
|
160 |
+
# i_r = i_r.clamp(-1, 1)
|
161 |
+
# return i_r
|
162 |
+
#
|
163 |
+
# else:
|
164 |
+
# raise ValueError('Not supported fs_model_name.')
|
165 |
+
#
|
166 |
+
#
|
167 |
+
# print(f'[demo] model loaded from {pt_path}')
|
168 |
+
|
169 |
+
|
170 |
+
def swap_image(
|
171 |
+
source_image,
|
172 |
+
target_path,
|
173 |
+
out_path,
|
174 |
+
transform,
|
175 |
+
G,
|
176 |
+
align_source="arcface",
|
177 |
+
align_target="set1",
|
178 |
+
gpu_mode=True,
|
179 |
+
paste_back=True,
|
180 |
+
use_post=False,
|
181 |
+
use_gpen=False,
|
182 |
+
in_size=256,
|
183 |
+
):
|
184 |
+
name = target_path.split("/")[-1]
|
185 |
+
name = "out_" + name
|
186 |
+
if isinstance(G, torch.nn.Module):
|
187 |
+
G.eval()
|
188 |
+
if gpu_mode:
|
189 |
+
G = G.cuda()
|
190 |
+
source_img = np.array(Image.open(source_image).convert("RGB"))
|
191 |
+
net, detector = get_lmk_model()
|
192 |
+
lmk = get_5_from_98(demo_image(source_img, net, detector)[0])
|
193 |
+
source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
|
194 |
+
source_img = transform(source_img).unsqueeze(0)
|
195 |
+
|
196 |
+
target = np.array(Image.open(target_path).convert("RGB"))
|
197 |
+
original_target = target.copy()
|
198 |
+
lmk = get_5_from_98(demo_image(target, net, detector)[0])
|
199 |
+
target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
|
200 |
+
target = transform(target).unsqueeze(0)
|
201 |
+
if gpu_mode:
|
202 |
+
target = target.cuda()
|
203 |
+
source_img = source_img.cuda()
|
204 |
+
|
205 |
+
cv2.imwrite('cropped_source.png', trick.tensor_to_arr(source_img)[0, :, :, ::-1])
|
206 |
+
cv2.imwrite('cropped_target.png', trick.tensor_to_arr(target)[0, :, :, ::-1])
|
207 |
+
|
208 |
+
# both inputs should be 512
|
209 |
+
result = infer_batch_to_img(source_img, target, post=use_post)
|
210 |
+
|
211 |
+
cv2.imwrite('result.png', result[:, :, ::-1])
|
212 |
+
|
213 |
+
os.makedirs(out_path, exist_ok=True)
|
214 |
+
Image.fromarray(result.astype(np.uint8)).save(os.path.join(out_path, name))
|
215 |
+
save((result, M, original_target, os.path.join(out_path, "paste_back_" + name), None),
|
216 |
+
trick=trick, use_post=use_gpen)
|
217 |
+
|
218 |
+
|
219 |
+
def process_video(
|
220 |
+
source_image,
|
221 |
+
target_path,
|
222 |
+
out_path,
|
223 |
+
transform,
|
224 |
+
G,
|
225 |
+
align_source="arcface",
|
226 |
+
align_target="set1",
|
227 |
+
gpu_mode=True,
|
228 |
+
frames=9999999,
|
229 |
+
use_tddfav2=False,
|
230 |
+
landmark_smooth="kalman",
|
231 |
+
):
|
232 |
+
if isinstance(G, torch.nn.Module):
|
233 |
+
G.eval()
|
234 |
+
if gpu_mode:
|
235 |
+
G = G.cuda()
|
236 |
+
''' Target video to frames (.png) '''
|
237 |
+
fps = 25.0
|
238 |
+
if not os.path.isdir(target_path):
|
239 |
+
vidcap = cv2.VideoCapture(target_path)
|
240 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
241 |
+
try:
|
242 |
+
for match in glob.glob(os.path.join("./tmp/", "*.png")):
|
243 |
+
os.remove(match)
|
244 |
+
for match in glob.glob(os.path.join(out_path, "*.png")):
|
245 |
+
os.remove(match)
|
246 |
+
except Exception as e:
|
247 |
+
print(e)
|
248 |
+
os.makedirs("./tmp/", exist_ok=True)
|
249 |
+
os.system(
|
250 |
+
f"ffmpeg -i {target_path} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 ./tmp/frame_%05d.png"
|
251 |
+
)
|
252 |
+
target_path = "./tmp/"
|
253 |
+
globbed_images = sorted(glob.glob(os.path.join(target_path, "*.png")))
|
254 |
+
''' Get target landmarks '''
|
255 |
+
print('[Extracting target landmarks...]')
|
256 |
+
if not use_tddfav2:
|
257 |
+
align_net, align_detector = get_lmk_model()
|
258 |
+
else:
|
259 |
+
align_net, align_detector = get_detector(gpu_mode=gpu_mode)
|
260 |
+
target_lmks = []
|
261 |
+
for frame_path in tqdm.tqdm(globbed_images):
|
262 |
+
target = np.array(Image.open(frame_path).convert("RGB"))
|
263 |
+
lmk = demo_image(target, align_net, align_detector)
|
264 |
+
lmk = lmk[0]
|
265 |
+
target_lmks.append(lmk)
|
266 |
+
''' Landmark smoothing '''
|
267 |
+
target_lmks = np.array(target_lmks, np.float32) # (#frames, 98, 2)
|
268 |
+
if landmark_smooth == 'kalman':
|
269 |
+
target_lmks = kalman_filter_landmark(target_lmks,
|
270 |
+
process_noise=0.01,
|
271 |
+
measure_noise=0.01).astype(np.int)
|
272 |
+
elif landmark_smooth == 'savgol':
|
273 |
+
target_lmks = savgol_filter_landmark(target_lmks).astype(np.int)
|
274 |
+
elif landmark_smooth == 'cancel':
|
275 |
+
target_lmks = target_lmks.astype(np.int)
|
276 |
+
else:
|
277 |
+
raise KeyError('Not supported landmark_smooth choice')
|
278 |
+
''' Crop source image '''
|
279 |
+
source_img = np.array(Image.open(source_image).convert("RGB"))
|
280 |
+
if not use_tddfav2:
|
281 |
+
lmk = get_5_from_98(demo_image(source_img, align_net, align_detector)[0])
|
282 |
+
else:
|
283 |
+
lmk = get_lmk(source_img, align_net, align_detector)
|
284 |
+
source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
|
285 |
+
source_img = transform(source_img).unsqueeze(0)
|
286 |
+
if gpu_mode:
|
287 |
+
source_img = source_img.cuda()
|
288 |
+
''' Process by frames '''
|
289 |
+
targets = []
|
290 |
+
t_facial_masks = []
|
291 |
+
Ms = []
|
292 |
+
original_frames = []
|
293 |
+
names = []
|
294 |
+
count = 0
|
295 |
+
for image in tqdm.tqdm(globbed_images):
|
296 |
+
names.append(os.path.join(out_path, Path(image).name))
|
297 |
+
target = np.array(Image.open(image).convert("RGB"))
|
298 |
+
original_frames.append(target)
|
299 |
+
''' Crop target frames '''
|
300 |
+
lmk = get_5_from_98(target_lmks[count])
|
301 |
+
target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
|
302 |
+
target = transform(target).unsqueeze(0) # in [-1,1]
|
303 |
+
if gpu_mode:
|
304 |
+
target = target.cuda()
|
305 |
+
''' Finetune paste masks '''
|
306 |
+
target_facial_mask = trick.get_any_mask(target,
|
307 |
+
par=[1, 2, 3, 4, 5, 6, 10, 11, 12, 13]).squeeze() # in [0,1]
|
308 |
+
target_facial_mask = target_facial_mask.cpu().numpy().astype(np.float)
|
309 |
+
target_facial_mask = trick.finetune_mask(target_facial_mask, target_lmks) # in [0,1]
|
310 |
+
t_facial_masks.append(target_facial_mask)
|
311 |
+
''' Face swapping '''
|
312 |
+
with torch.no_grad():
|
313 |
+
if 'faceshifter' in fs_model_name:
|
314 |
+
output = G(source_img, target)
|
315 |
+
target_hair_mask = trick.get_any_mask(target, par=[0, 17])
|
316 |
+
target_hair_mask = trick.smooth_mask(target_hair_mask)
|
317 |
+
output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
|
318 |
+
output = trick.finetune_mouth(source_img, target, output)
|
319 |
+
elif 'simswap' in fs_model_name and 'official' not in fs_model_name:
|
320 |
+
output = fs_model(source=source_img, target=target,
|
321 |
+
net_arc=sw_netArc, mouth_net=sw_mouth_net,)
|
322 |
+
if 'vanilla' not in fs_model_name:
|
323 |
+
target_hair_mask = trick.get_any_mask(target, par=[0, 17])
|
324 |
+
target_hair_mask = trick.smooth_mask(target_hair_mask)
|
325 |
+
output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
|
326 |
+
output = trick.finetune_mouth(source_img, target, output)
|
327 |
+
output = output.clamp(-1, 1)
|
328 |
+
elif 'simswap_official' in fs_model_name:
|
329 |
+
output = fs_model.image_infer(source_tensor=source_img, target_tensor=target)
|
330 |
+
output = output.clamp(-1, 1)
|
331 |
+
if isinstance(output, tuple):
|
332 |
+
target = output[0][0] * 0.5 + 0.5
|
333 |
+
else:
|
334 |
+
target = output[0] * 0.5 + 0.5
|
335 |
+
targets.append(np.array(tensor2pil_transform(target)))
|
336 |
+
Ms.append(M)
|
337 |
+
count += 1
|
338 |
+
if count > frames:
|
339 |
+
break
|
340 |
+
os.makedirs(out_path, exist_ok=True)
|
341 |
+
return targets, t_facial_masks, Ms, original_frames, names, fps
|
342 |
+
|
343 |
+
|
344 |
+
def swap_image_gr(img1, img2, use_post=False, use_gpen=False, gpu_mode=True):
|
345 |
+
root_dir = make_abs_path("./online_data")
|
346 |
+
req_id = uuid.uuid1().hex
|
347 |
+
data_dir = os.path.join(root_dir, req_id)
|
348 |
+
os.makedirs(data_dir, exist_ok=True)
|
349 |
+
source_path = os.path.join(data_dir, "source.png")
|
350 |
+
target_path = os.path.join(data_dir, "target.png")
|
351 |
+
filename = "paste_back_out_target.png"
|
352 |
+
out_path = os.path.join(data_dir, filename)
|
353 |
+
cv2.imwrite(source_path, img1[:, :, ::-1])
|
354 |
+
cv2.imwrite(target_path, img2[:, :, ::-1])
|
355 |
+
swap_image(
|
356 |
+
source_path,
|
357 |
+
target_path,
|
358 |
+
data_dir,
|
359 |
+
T,
|
360 |
+
fs_model,
|
361 |
+
gpu_mode=gpu_mode,
|
362 |
+
align_target='ffhq',
|
363 |
+
align_source='ffhq',
|
364 |
+
use_post=use_post,
|
365 |
+
use_gpen=use_gpen,
|
366 |
+
in_size=in_size,
|
367 |
+
)
|
368 |
+
out = cv2.imread(out_path)[..., ::-1]
|
369 |
+
return out
|
370 |
+
|
371 |
+
|
372 |
+
def swap_video_gr(img1, target_path, use_gpu=True, frames=9999999):
|
373 |
+
root_dir = make_abs_path("./online_data")
|
374 |
+
req_id = uuid.uuid1().hex
|
375 |
+
data_dir = os.path.join(root_dir, req_id)
|
376 |
+
os.makedirs(data_dir, exist_ok=True)
|
377 |
+
source_path = os.path.join(data_dir, "source.png")
|
378 |
+
cv2.imwrite(source_path, img1[:, :, ::-1])
|
379 |
+
out_dir = os.path.join(data_dir, "out")
|
380 |
+
out_name = "output.mp4"
|
381 |
+
targets, t_facial_masks, Ms, original_frames, names, fps = process_video(
|
382 |
+
source_path,
|
383 |
+
target_path,
|
384 |
+
out_dir,
|
385 |
+
T,
|
386 |
+
fs_model,
|
387 |
+
gpu_mode=use_gpu,
|
388 |
+
frames=frames,
|
389 |
+
align_target='ffhq',
|
390 |
+
align_source='ffhq',
|
391 |
+
use_tddfav2=False,
|
392 |
+
)
|
393 |
+
|
394 |
+
pool_process = 170
|
395 |
+
audio = True
|
396 |
+
concat = False
|
397 |
+
|
398 |
+
if pool_process <= 1:
|
399 |
+
for target, M, original_target, name, t_facial_mask in tqdm.tqdm(
|
400 |
+
zip(targets, Ms, original_frames, names, t_facial_masks)
|
401 |
+
):
|
402 |
+
if M is None or target is None:
|
403 |
+
Image.fromarray(original_target.astype(np.uint8)).save(name)
|
404 |
+
continue
|
405 |
+
Image.fromarray(paste_back(np.array(target), M, original_target, t_facial_mask)).save(name)
|
406 |
+
else:
|
407 |
+
with Pool(pool_process) as pool:
|
408 |
+
pool.map(save, zip(targets, Ms, original_frames, names, t_facial_masks))
|
409 |
+
|
410 |
+
video_save_path = os.path.join(out_dir, out_name)
|
411 |
+
if audio:
|
412 |
+
print("use audio")
|
413 |
+
os.system(
|
414 |
+
f"ffmpeg -y -r {fps} -i {out_dir}/frame_%05d.png -i {target_path}"
|
415 |
+
f" -map 0:v:0 -map 1:a:0? -c:a copy -c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p {video_save_path}"
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
print("no audio")
|
419 |
+
os.system(
|
420 |
+
f"ffmpeg -y -r {fps} -i ./tmp/frame_%05d.png "
|
421 |
+
f"-c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p {video_save_path}"
|
422 |
+
)
|
423 |
+
# ffmpeg -i left.mp4 -i right.mp4 -filter_complex hstack output.mp4
|
424 |
+
if concat:
|
425 |
+
concat_video_save_path = os.path.join(out_dir, "concat_" + out_name)
|
426 |
+
os.system(
|
427 |
+
f"ffmpeg -y -i {target_path} -i {video_save_path} -filter_complex hstack {concat_video_save_path}"
|
428 |
+
)
|
429 |
+
# delete tmp file
|
430 |
+
shutil.rmtree("./tmp/")
|
431 |
+
for match in glob.glob(os.path.join(out_dir, "*.png")):
|
432 |
+
os.remove(match)
|
433 |
+
print(video_save_path)
|
434 |
+
return video_save_path
|
435 |
+
|
436 |
+
|
437 |
+
if __name__ == "__main__":
|
438 |
+
with gr.Blocks() as demo:
|
439 |
+
gr.Markdown("SuperSwap")
|
440 |
+
|
441 |
+
with gr.Tab("Image"):
|
442 |
+
with gr.Row(equal_height=True):
|
443 |
+
with gr.Column(scale=3):
|
444 |
+
image1_input = gr.Image()
|
445 |
+
image2_input = gr.Image()
|
446 |
+
use_post = gr.Checkbox(label="后处理")
|
447 |
+
use_gpen = gr.Checkbox(label="超分增强")
|
448 |
+
with gr.Column(scale=2):
|
449 |
+
image_output = gr.Image()
|
450 |
+
image_button = gr.Button("换脸")
|
451 |
+
with gr.Tab("Video"):
|
452 |
+
with gr.Row(equal_height=True):
|
453 |
+
with gr.Column(scale=3):
|
454 |
+
image3_input = gr.Image()
|
455 |
+
video_input = gr.Video()
|
456 |
+
with gr.Column(scale=2):
|
457 |
+
video_output = gr.Video()
|
458 |
+
video_button = gr.Button("换脸")
|
459 |
+
image_button.click(
|
460 |
+
swap_image_gr,
|
461 |
+
inputs=[image1_input, image2_input, use_post, use_gpen],
|
462 |
+
outputs=image_output,
|
463 |
+
)
|
464 |
+
video_button.click(
|
465 |
+
swap_video_gr,
|
466 |
+
inputs=[image3_input, video_input],
|
467 |
+
outputs=video_output,
|
468 |
+
)
|
469 |
+
|
470 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|