import os import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np from third_party.bisenet.bisenet import BiSeNet from third_party.GPEN.infer_image import GPENImageInfer make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn)) class Trick(object): def __init__(self): self.gpen_model = None self.mouth_helper = None @staticmethod def get_any_mask(img, par=None, normalized=False): # [0, 'background', 1 'skin', 2 'l_brow', 3 'r_brow', 4 'l_eye', 5 'r_eye', # 6 'eye_g', 7 'l_ear', 8 'r_ear', 9 'ear_r', 10 'nose', 11 'mouth', 12 'u_lip', # 13 'l_lip', 14 'neck', 15 'neck_l', 16 'cloth', 17 'hair', 18 'hat'] ori_h, ori_w = img.shape[2], img.shape[3] with torch.no_grad(): img = F.interpolate(img, size=512, mode="nearest", ) if not normalized: img = img * 0.5 + 0.5 img = img.sub(vgg_mean.detach()).div(vgg_std.detach()) out = global_bisenet(img)[0] parsing = out.softmax(1).argmax(1) mask = torch.zeros_like(parsing) for p in par: mask = mask + ((parsing == p).float()) mask = mask.unsqueeze(1) mask = F.interpolate(mask, size=(ori_h, ori_w), mode="bilinear", align_corners=True) return mask @staticmethod def finetune_mask(facial_mask: np.ndarray, lmk_98: np.ndarray = None): assert facial_mask.shape[1] == 256 facial_mask = (facial_mask * 255).astype(np.uint8) # h_min = lmk_98[33:41, 0].min() + 20 h_min = 80 facial_mask = cv2.dilate(facial_mask, (40, 40), iterations=1) facial_mask[:h_min] = 0 # black facial_mask[255 - 20:] = 0 kernel_size = (20, 20) blur_size = tuple(2 * j + 1 for j in kernel_size) facial_mask = cv2.GaussianBlur(facial_mask, blur_size, 0) return facial_mask.astype(np.float) / 255 @staticmethod def smooth_mask(mask_tensor: torch.Tensor): mask_tensor, _ = global_smooth_mask(mask_tensor) return mask_tensor @staticmethod def tensor_to_arr(tensor): return ((tensor + 1.) * 127.5).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) @staticmethod def arr_to_tensor(arr, norm: bool = True): tensor = torch.tensor(arr, dtype=torch.float).to(global_device) / 255 # in [0,1] tensor = (tensor - 0.5) / 0.5 if norm else tensor # in [-1,1] tensor = tensor.permute(0, 3, 1, 2) return tensor def gpen(self, img_np: np.ndarray, use_gpen=True): if not use_gpen: return img_np if self.gpen_model is None: self.gpen_model = GPENImageInfer(device=global_device) img_np = self.gpen_model.image_infer(img_np) return img_np def finetune_mouth(self, i_s, i_t, i_r): if self.mouth_helper is None: self.load_mouth_helper() helper_face = self.mouth_helper(i_s, i_t)[0] i_r_mouth_mask = self.get_any_mask(i_r, par=[11, 12, 13]) # (B,1,H,W) ''' dilate and blur by cv2 ''' i_r_mouth_mask = self.tensor_to_arr(i_r_mouth_mask)[0] # (H,W,C) i_r_mouth_mask = cv2.dilate(i_r_mouth_mask, (20, 20), iterations=1) kernel_size = (5, 5) blur_size = tuple(2 * j + 1 for j in kernel_size) i_r_mouth_mask = cv2.GaussianBlur(i_r_mouth_mask, blur_size, 0) # (H,W,C) i_r_mouth_mask = i_r_mouth_mask.squeeze()[None, :, :, None] # (1,H,W,1) i_r_mouth_mask = self.arr_to_tensor(i_r_mouth_mask, norm=False) # in [0,1] return helper_face * i_r_mouth_mask + i_r * (1 - i_r_mouth_mask) def load_mouth_helper(self): from modules.networks.faceshifter import FSGenerator # mouth_helper_pl = EvaluatorFaceShifter( # load_path="/apdcephfs/share_1290939/gavinyuan/out/triplet10w_34/epoch=13-step=737999.ckpt", # pt_path=make_abs_path("../ffplus/extracted_ckpt/G_t34_helper_post.pth"), # benchmark=None, # demo_folder=None, # ) pt_path = make_abs_path("../weights/extracted/G_t34_helper_post.pth") self.mouth_helper = FSGenerator( make_abs_path("../weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"), mouth_net_param={"use": False}, in_size=256, downup=False, ) self.mouth_helper.load_state_dict(torch.load(pt_path, "cpu"), strict=True) self.mouth_helper.eval() print("[Mouth helper] loaded.") """ From MegaFS: https://github.com/zyainfal/One-Shot-Face-Swapping-on-Megapixels/tree/main/inference """ class SoftErosion(nn.Module): def __init__(self, kernel_size=15, threshold=0.6, iterations=1): super(SoftErosion, self).__init__() r = kernel_size // 2 self.padding = r self.iterations = iterations self.threshold = threshold # Create kernel y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) kernel = dist.max() - dist kernel /= kernel.sum() kernel = kernel.view(1, 1, *kernel.shape) self.register_buffer('weight', kernel) def forward(self, x): x = x.float() for i in range(self.iterations - 1): x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) mask = x >= self.threshold x[mask] = 1.0 x[~mask] /= x[~mask].max() return x, mask if torch.cuda.is_available(): global_device = torch.device(0) else: global_device = torch.device('cpu') vgg_mean = torch.tensor([[[0.485]], [[0.456]], [[0.406]]], requires_grad=False, device=global_device) vgg_std = torch.tensor([[[0.229]], [[0.224]], [[0.225]]], requires_grad=False, device=global_device) def load_bisenet(): bisenet_model = BiSeNet(n_classes=19) bisenet_model.load_state_dict( torch.load(make_abs_path("../weights/bisenet/79999_iter.pth",), map_location="cpu") ) bisenet_model.eval() bisenet_model = bisenet_model.to(global_device) smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).to(global_device) print('[Global] bisenet loaded.') return bisenet_model, smooth_mask global_bisenet, global_smooth_mask = load_bisenet()