|
|
|
|
|
import gradio as gr |
|
import json |
|
import pandas as pd |
|
from vocab import load_tokener |
|
from utils.zh_util import iter_vocab |
|
|
|
|
|
|
|
|
|
def tokenize(text, tokenizer_type, color_num=5, update=True): |
|
""" |
|
TODO: cache tokenizer |
|
""" |
|
print(f"入参:tokenize, {text}, {tokenizer_type}") |
|
pos_tokens = [] |
|
tokenizer = load_tokener(tokenizer_type) |
|
encoding = tokenizer.encode(text) |
|
|
|
table = [] |
|
|
|
for idx, token_id in enumerate(encoding): |
|
decode_text = tokenizer.decode([token_id]) |
|
pos_tokens.extend([(decode_text, str(idx % color_num))]) |
|
|
|
|
|
token = tokenizer.convert_ids_to_tokens([token_id])[0] |
|
if isinstance(token, bytes): |
|
try: |
|
token_str = token.decode("utf-8") |
|
except: |
|
token_str = token.decode("utf-8", errors="ignore") |
|
print("decode_error", tokenizer_type, token, token_str) |
|
|
|
token_bytes = token |
|
json_dumps = json.dumps(token_str) |
|
elif isinstance(token, str): |
|
token_str = token |
|
token_bytes = bytes(token_str, "utf-8") |
|
json_dumps = json.dumps(token_str) |
|
else: |
|
return |
|
|
|
|
|
table.append( |
|
{"TokenID": token_id, |
|
"Token": token_str, |
|
"Text": decode_text, |
|
|
|
"Bytes": str(token_bytes), |
|
|
|
} |
|
) |
|
|
|
table_df = pd.DataFrame(table) |
|
print(f"Tokenization[{tokenizer_type}]: {table}") |
|
|
|
|
|
if update: |
|
return gr.update(value=pos_tokens, label=f"Tokens: {len(encoding)}"), table_df |
|
else: |
|
return pos_tokens, table_df |
|
|
|
|
|
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2): |
|
pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1) |
|
pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2) |
|
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2 |
|
|
|
|
|
def basic_count(tokenizer_type): |
|
tokenizer = load_tokener(tokenizer_type) |
|
stats = iter_vocab(tokenizer, tokenizer_type) |
|
return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}' |
|
|
|
|
|
def get_overlap_token_size(tokenizer_type_1, tokenizer_type_2): |
|
tokenizer1 = load_tokener(tokenizer_type_1) |
|
tokenizer2 = load_tokener(tokenizer_type_2) |
|
vocab1 = tokenizer1.get_vocab() |
|
vocab2 = tokenizer2.get_vocab() |
|
overlap_tokens = vocab1.keys() & vocab2.keys() |
|
overlap_token_size = len(overlap_tokens) |
|
print(f"OverlapTokens: {tokenizer_type_1}, {tokenizer_type_2} {list(overlap_tokens)[:10]}") |
|
return overlap_token_size, overlap_token_size |
|
|
|
|
|
|
|
|
|
def test_coding(): |
|
bytes1 = b'\xe4\xb8\xad' |
|
print(bytes1) |
|
|
|
|
|
if __name__ == "__main__": |
|
print(basic_count("internlm_chat_7b")) |