|
""" |
|
merge 是干嘛的? |
|
|
|
## 结果 |
|
|
|
共merge 4357 个 token |
|
""" |
|
|
|
import json |
|
from tokenizers import Tokenizer |
|
|
|
|
|
oov_tokens = [line.strip().split("\t")[0] for line in open("../gpt_neox_chinese_v1/oov.txt", "r", encoding="utf-8")] |
|
|
|
|
|
def load_base_tokenizer(): |
|
old_vocab_path = "../gpt_neox_chinese_v1/20B_tokenizer_chinese.json" |
|
data = json.load(open(old_vocab_path, "r", encoding="utf-8")) |
|
tokenizer = Tokenizer.from_file(old_vocab_path) |
|
print("vocab_size with added_tokens:", ) |
|
return data, tokenizer |
|
|
|
data, base_tokenizer = load_base_tokenizer() |
|
vocab = data["model"]["vocab"] |
|
merges = data["model"]["merges"] |
|
vocab_size = base_tokenizer.get_vocab_size(with_added_tokens=True) |
|
|
|
|
|
""" |
|
方式一:原有的added_tokens保持id不变。方式二:原有的added_tokens进行id移位。 |
|
以下采用方式一。 |
|
""" |
|
new_added_tokens = set() |
|
for word in oov_tokens: |
|
if len(word) > 1 or word in new_added_tokens: |
|
continue |
|
encoding = base_tokenizer.encode(word) |
|
|
|
if len(encoding.ids) == 2: |
|
tokens = [base_tokenizer.id_to_token(token_id) for token_id in encoding.ids] |
|
print("merging", word, json.dumps(tokens)) |
|
vocab["".join(tokens)] = vocab_size |
|
vocab_size += 1 |
|
merges.append(" ".join(tokens)) |
|
new_added_tokens.add(word) |
|
|
|
|
|
print("共merge %d 个 token" % (len(new_added_tokens))) |
|
|
|
f_out = open("20B_tokenizer_chinese.v2.json", "w", encoding="utf-8") |
|
|
|
json.dump(data, f_out, indent=2) |