File size: 5,796 Bytes
46ffa30
3f553b1
46ffa30
 
 
 
 
 
 
 
 
 
 
 
8cd0b56
 
46ffa30
8cd0b56
 
 
 
 
 
 
46ffa30
 
8cd0b56
 
46ffa30
3f553b1
46ffa30
 
8cd0b56
 
46ffa30
3f553b1
46ffa30
8cd0b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46ffa30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd0b56
46ffa30
a19a543
3f553b1
a19a543
46ffa30
3f553b1
 
46ffa30
 
 
 
 
 
 
3f553b1
 
 
 
8cd0b56
3f553b1
46ffa30
 
3f553b1
 
 
 
 
 
 
 
 
 
 
a19a543
3f553b1
 
 
 
 
 
 
 
 
46ffa30
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import torch

import psutil
import streamlit as st

from generator import GeneratorFactory

device = torch.cuda.device_count() - 1

TRANSLATION_NL_TO_EN = "translation_en_to_nl"

GENERATOR_LIST = [
    {
        "model_name": "Helsinki-NLP/opus-mt-en-nl",
        "desc": "Opus MT en->nl",
        "task": TRANSLATION_NL_TO_EN,
        "split_sentences": True,
    },
    {
        "model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
        "desc": "T5 small nl24 ccmatrix en->nl",
        "task": TRANSLATION_NL_TO_EN,
        "split_sentences": True,
    },
    {
        "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512l-nedd-256ccmatrix-en-nl",
        "desc": "longT5 large nl8 256cc/512beta/512l en->nl",
        "task": TRANSLATION_NL_TO_EN,
        "split_sentences": False,
    },
    {
        "model_name": "yhavinga/byt5-small-ccmatrix-en-nl",
        "desc": "ByT5 small ccmatrix en->nl",
        "task": TRANSLATION_NL_TO_EN,
        "split_sentences": True,
    },
    # {
    #     "model_name": "yhavinga/t5-eff-large-8l-nedd-en-nl",
    #     "desc": "T5 eff large nl8 en->nl",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": True,
    # },
    # {
    #     "model_name": "yhavinga/t5-base-36L-ccmatrix-multi",
    #     "desc": "T5 base nl36 ccmatrix en->nl",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": True,
    # },
    # {
    #     "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512-nedd-en-nl",
    #     "desc": "longT5 large nl8 512beta/512l en->nl",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": False,
    # },
    # {
    #     "model_name": "yhavinga/t5-base-36L-nedd-x-en-nl-300",
    #     "desc": "T5 base 36L nedd en->nl 300",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": True,
    # },
    # {
    #     "model_name": "yhavinga/long-t5-local-small-ccmatrix-en-nl",
    #     "desc": "longT5 small ccmatrix en->nl",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": True,
    # },
]


def main():
    st.set_page_config(  # Alternate names: setup_page, page, layout
        page_title="Babel",  # String or None. Strings get appended with "โ€ข Streamlit".
        layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
        initial_sidebar_state="expanded",  # Can be "auto", "expanded", "collapsed"
        page_icon="๐Ÿ“š",  # String, anything supported by st.image, or None.
    )

    if "generators" not in st.session_state:
        st.session_state["generators"] = GeneratorFactory(GENERATOR_LIST)
    generators = st.session_state["generators"]

    with open("style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
    st.sidebar.image("babel.png", width=200)
    st.sidebar.markdown(
        """# Babel
    Vertaal van en naar Engels"""
    )
    st.sidebar.title("Parameters:")
    if "prompt_box" not in st.session_state:
        # Text is from https://www.gutenberg.org/files/35091/35091-h/35091-h.html
        st.session_state[
            "prompt_box"
        ] = """It was a wet, gusty night and I had a lonely walk home. By taking the river road, though I hated it, I saved two miles, so I sloshed ahead trying not to think at all. Through the barbed wire fence I could see the racing river. Its black swollen body writhed along with extraordinary swiftness, breathlessly silent, only occasionally making a swishing ripple. I did not enjoy looking at it. I was somehow afraid.

And there, at the end of the river road where I swerved off, a figure stood waiting for me, motionless and enigmatic. I had to meet it or turn back.

It was a quite young girl, unknown to me, with a hood over her head, and with large unhappy eyes.

โ€œMy father is very ill,โ€ she said without a word of introduction. โ€œThe nurse is frightened. Could you come in and help?โ€"""
    st.session_state["text"] = st.text_area(
        "Enter text", st.session_state.prompt_box, height=250
    )
    num_beams = st.sidebar.number_input("Num beams", min_value=1, max_value=10, value=1)
    num_beam_groups = st.sidebar.number_input(
        "Num beam groups", min_value=1, max_value=10, value=1
    )
    length_penalty = st.sidebar.number_input(
        "Length penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.1
    )
    st.sidebar.markdown(
        """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
    )

    params = {
        "num_beams": num_beams,
        "num_beam_groups": num_beam_groups,
        "length_penalty": length_penalty,
        "early_stopping": True,
    }

    if st.button("Run"):
        memory = psutil.virtual_memory()

        for generator in generators:
            st.markdown(f"๐Ÿงฎ **Model `{generator}`**")
            time_start = time.time()
            result, params_used = generator.generate(
                text=st.session_state.text, **params
            )
            time_end = time.time()
            time_diff = time_end - time_start

            st.write(result.replace("\n", "  \n"))
            text_line = ", ".join([f"{k}={v}" for k, v in params_used.items()])
            st.markdown(f"    ๐Ÿ•™ *generated in {time_diff:.2f}s, `{text_line}`*")

        st.write(
            f"""
        ---
        *Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
        """
        )


if __name__ == "__main__":
    main()