|
""" |
|
This HRNet implementation is modified from the following repository: |
|
https://github.com/HRNet/HRNet-Semantic-Segmentation |
|
""" |
|
|
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .lib.nn import SynchronizedBatchNorm2d |
|
from .utils import load_url |
|
|
|
BatchNorm2d = SynchronizedBatchNorm2d |
|
BN_MOMENTUM = 0.1 |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
__all__ = ["hrnetv2"] |
|
|
|
|
|
model_urls = { |
|
"hrnetv2": "http://sceneparsing.csail.mit.edu/model/pretrained_resnet/hrnetv2_w48-imagenet.pth", |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv3 = nn.Conv2d( |
|
planes, planes * self.expansion, kernel_size=1, bias=False |
|
) |
|
self.bn3 = BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
def __init__( |
|
self, |
|
num_branches, |
|
blocks, |
|
num_blocks, |
|
num_inchannels, |
|
num_channels, |
|
fuse_method, |
|
multi_scale_output=True, |
|
): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches( |
|
num_branches, blocks, num_blocks, num_inchannels, num_channels |
|
) |
|
|
|
self.num_inchannels = num_inchannels |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches( |
|
num_branches, blocks, num_blocks, num_channels |
|
) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def _check_branches( |
|
self, num_branches, blocks, num_blocks, num_inchannels, num_channels |
|
): |
|
if num_branches != len(num_blocks): |
|
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format( |
|
num_branches, len(num_blocks) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( |
|
num_branches, len(num_channels) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_inchannels): |
|
error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( |
|
num_branches, len(num_inchannels) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): |
|
downsample = None |
|
if ( |
|
stride != 1 |
|
or self.num_inchannels[branch_index] |
|
!= num_channels[branch_index] * block.expansion |
|
): |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.num_inchannels[branch_index], |
|
num_channels[branch_index] * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
BatchNorm2d( |
|
num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM |
|
), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.num_inchannels[branch_index], |
|
num_channels[branch_index], |
|
stride, |
|
downsample, |
|
) |
|
) |
|
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append( |
|
block(self.num_inchannels[branch_index], num_channels[branch_index]) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return None |
|
|
|
num_branches = self.num_branches |
|
num_inchannels = self.num_inchannels |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_inchannels[i], |
|
1, |
|
1, |
|
0, |
|
bias=False, |
|
), |
|
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM), |
|
) |
|
) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, |
|
2, |
|
1, |
|
bias=False, |
|
), |
|
BatchNorm2d( |
|
num_outchannels_conv3x3, momentum=BN_MOMENTUM |
|
), |
|
) |
|
) |
|
else: |
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, |
|
2, |
|
1, |
|
bias=False, |
|
), |
|
BatchNorm2d( |
|
num_outchannels_conv3x3, momentum=BN_MOMENTUM |
|
), |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_inchannels(self): |
|
return self.num_inchannels |
|
|
|
def forward(self, x): |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
for i in range(len(self.fuse_layers)): |
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y = y + x[j] |
|
elif j > i: |
|
width_output = x[i].shape[-1] |
|
height_output = x[i].shape[-2] |
|
y = y + F.interpolate( |
|
self.fuse_layers[i][j](x[j]), |
|
size=(height_output, width_output), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
else: |
|
y = y + self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
|
|
return x_fuse |
|
|
|
|
|
blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} |
|
|
|
|
|
class HRNetV2(nn.Module): |
|
def __init__(self, n_class, **kwargs): |
|
super(HRNetV2, self).__init__() |
|
extra = { |
|
"STAGE2": { |
|
"NUM_MODULES": 1, |
|
"NUM_BRANCHES": 2, |
|
"BLOCK": "BASIC", |
|
"NUM_BLOCKS": (4, 4), |
|
"NUM_CHANNELS": (48, 96), |
|
"FUSE_METHOD": "SUM", |
|
}, |
|
"STAGE3": { |
|
"NUM_MODULES": 4, |
|
"NUM_BRANCHES": 3, |
|
"BLOCK": "BASIC", |
|
"NUM_BLOCKS": (4, 4, 4), |
|
"NUM_CHANNELS": (48, 96, 192), |
|
"FUSE_METHOD": "SUM", |
|
}, |
|
"STAGE4": { |
|
"NUM_MODULES": 3, |
|
"NUM_BRANCHES": 4, |
|
"BLOCK": "BASIC", |
|
"NUM_BLOCKS": (4, 4, 4, 4), |
|
"NUM_CHANNELS": (48, 96, 192, 384), |
|
"FUSE_METHOD": "SUM", |
|
}, |
|
"FINAL_CONV_KERNEL": 1, |
|
} |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(Bottleneck, 64, 64, 4) |
|
|
|
self.stage2_cfg = extra["STAGE2"] |
|
num_channels = self.stage2_cfg["NUM_CHANNELS"] |
|
block = blocks_dict[self.stage2_cfg["BLOCK"]] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition1 = self._make_transition_layer([256], num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels |
|
) |
|
|
|
self.stage3_cfg = extra["STAGE3"] |
|
num_channels = self.stage3_cfg["NUM_CHANNELS"] |
|
block = blocks_dict[self.stage3_cfg["BLOCK"]] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, num_channels |
|
) |
|
|
|
self.stage4_cfg = extra["STAGE4"] |
|
num_channels = self.stage4_cfg["NUM_CHANNELS"] |
|
block = blocks_dict[self.stage4_cfg["BLOCK"]] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, num_channels, multi_scale_output=True |
|
) |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append( |
|
nn.Sequential( |
|
nn.Conv2d( |
|
num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
3, |
|
1, |
|
1, |
|
bias=False, |
|
), |
|
BatchNorm2d( |
|
num_channels_cur_layer[i], momentum=BN_MOMENTUM |
|
), |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
inchannels = num_channels_pre_layer[-1] |
|
outchannels = ( |
|
num_channels_cur_layer[i] |
|
if j == i - num_branches_pre |
|
else inchannels |
|
) |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), |
|
BatchNorm2d(outchannels, momentum=BN_MOMENTUM), |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(inplanes, planes, stride, downsample)) |
|
inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): |
|
num_modules = layer_config["NUM_MODULES"] |
|
num_branches = layer_config["NUM_BRANCHES"] |
|
num_blocks = layer_config["NUM_BLOCKS"] |
|
num_channels = layer_config["NUM_CHANNELS"] |
|
block = blocks_dict[layer_config["BLOCK"]] |
|
fuse_method = layer_config["FUSE_METHOD"] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
reset_multi_scale_output = False |
|
else: |
|
reset_multi_scale_output = True |
|
modules.append( |
|
HighResolutionModule( |
|
num_branches, |
|
block, |
|
num_blocks, |
|
num_inchannels, |
|
num_channels, |
|
fuse_method, |
|
reset_multi_scale_output, |
|
) |
|
) |
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
def forward(self, x, return_feature_maps=False): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg["NUM_BRANCHES"]): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg["NUM_BRANCHES"]): |
|
if self.transition2[i] is not None: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg["NUM_BRANCHES"]): |
|
if self.transition3[i] is not None: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
x = self.stage4(x_list) |
|
|
|
|
|
x0_h, x0_w = x[0].size(2), x[0].size(3) |
|
x1 = F.interpolate( |
|
x[1], size=(x0_h, x0_w), mode="bilinear", align_corners=False |
|
) |
|
x2 = F.interpolate( |
|
x[2], size=(x0_h, x0_w), mode="bilinear", align_corners=False |
|
) |
|
x3 = F.interpolate( |
|
x[3], size=(x0_h, x0_w), mode="bilinear", align_corners=False |
|
) |
|
|
|
x = torch.cat([x[0], x1, x2, x3], 1) |
|
|
|
|
|
return [x] |
|
|
|
|
|
def hrnetv2(pretrained=False, **kwargs): |
|
model = HRNetV2(n_class=1000, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(load_url(model_urls["hrnetv2"]), strict=False) |
|
|
|
return model |
|
|