WSCL / models /lib /nn /modules /tests /test_numeric_batchnorm.py
yhzhai's picture
add missing files
88677a1
raw
history blame
1.61 kB
# -*- coding: utf-8 -*-
# File : test_numeric_batchnorm.py
# Author : Jiayuan Mao
# Email : maojiayuan@gmail.com
# Date : 27/01/2018
#
# This file is part of Synchronized-BatchNorm-PyTorch.
import unittest
import torch
import torch.nn as nn
from sync_batchnorm.unittest import TorchTestCase
from torch.autograd import Variable
def handy_var(a, unbias=True):
n = a.size(0)
asum = a.sum(dim=0)
as_sum = (a ** 2).sum(dim=0) # a square sum
sumvar = as_sum - asum * asum / n
if unbias:
return sumvar / (n - 1)
else:
return sumvar / n
class NumericTestCase(TorchTestCase):
def testNumericBatchNorm(self):
a = torch.rand(16, 10)
bn = nn.BatchNorm2d(10, momentum=1, eps=1e-5, affine=False)
bn.train()
a_var1 = Variable(a, requires_grad=True)
b_var1 = bn(a_var1)
loss1 = b_var1.sum()
loss1.backward()
a_var2 = Variable(a, requires_grad=True)
a_mean2 = a_var2.mean(dim=0, keepdim=True)
a_std2 = torch.sqrt(handy_var(a_var2, unbias=False).clamp(min=1e-5))
# a_std2 = torch.sqrt(a_var2.var(dim=0, keepdim=True, unbiased=False) + 1e-5)
b_var2 = (a_var2 - a_mean2) / a_std2
loss2 = b_var2.sum()
loss2.backward()
self.assertTensorClose(bn.running_mean, a.mean(dim=0))
self.assertTensorClose(bn.running_var, handy_var(a))
self.assertTensorClose(a_var1.data, a_var2.data)
self.assertTensorClose(b_var1.data, b_var2.data)
self.assertTensorClose(a_var1.grad, a_var2.grad)
if __name__ == '__main__':
unittest.main()