Spaces:
Running
on
Zero
Running
on
Zero
""" | |
modified from from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter.py | |
""" | |
import os | |
from typing import List | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import CLIPVisionModelWithProjection | |
import alpha_clip | |
from .utils import get_generator | |
from .attention_processor import AttnProcessor, IPAttnProcessor | |
from safetensors import safe_open | |
from safetensors.torch import load_model | |
import numpy as np | |
import torch.nn as nn | |
class ImageProjModel(torch.nn.Module): | |
"""Projection Model of IP-Adapter""" | |
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): | |
super().__init__() | |
self.generator = None | |
self.cross_attention_dim = cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, image_embeds): | |
embeds = image_embeds | |
clip_extra_context_tokens = self.proj(embeds).reshape( | |
-1, self.clip_extra_context_tokens, self.cross_attention_dim | |
) | |
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
return clip_extra_context_tokens | |
class CLIPAway: | |
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, alpha_clip_path, config, alpha_clip_id="ViT-L/14", device="cuda", num_tokens=4): | |
super().__init__() | |
self.device = device | |
self.ipadapter_image_encoder_path = image_encoder_path | |
self.ipadapter_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
alpha_clip_model, alpha_clip_preprocess = alpha_clip.load(alpha_clip_id, alpha_vision_ckpt_pth=alpha_clip_path, device=device) | |
# load image encoder | |
self.image_encoder = alpha_clip_model.visual.to(self.device, dtype=torch.float32) | |
self.clip_proj = CLIPVisionModelWithProjection.from_pretrained(self.ipadapter_image_encoder_path).to( | |
self.device, dtype=torch.float32 | |
) | |
self.alpha_clip_image_processor = alpha_clip_preprocess | |
# preprocess mask transformation for alpha clip | |
if "@336" in alpha_clip_id: | |
self.mask_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((336, 336)), # change to (336,336) when using ViT-L/14@336px | |
transforms.Normalize(0.5, 0.26) | |
]) | |
else: | |
self.mask_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((224, 224)), # change to (336,336) when using ViT-L/14@336px | |
transforms.Normalize(0.5, 0.26) | |
]) | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
self.mlp_projection_layer = self.generate_projection_layer(config) | |
print(config.mlp_projection_layer_ckpt_path, type(config.mlp_projection_layer_ckpt_path) ) | |
if config.mlp_projection_layer_ckpt_path is not None: | |
self.load_projection_layer(config.mlp_projection_layer_ckpt_path) | |
def load_projection_layer(self, path): | |
load_model(self.mlp_projection_layer, path) | |
print("Projection layer loaded from", path) | |
def generate_projection_layer(self, config): | |
projection_layer = nn.ModuleList() | |
for i in range(config.number_of_hidden_layers): | |
if i < config.number_of_hidden_layers // 2: | |
projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.alpha_clip_embed_dim)) | |
projection_layer.append(nn.LayerNorm(config.alpha_clip_embed_dim)) | |
elif i == config.number_of_hidden_layers // 2: | |
projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.ip_adapter_embed_dim)) | |
projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim)) | |
else: | |
projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim)) | |
projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim)) | |
projection_layer.append(nn.GELU()) | |
projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim)) | |
return nn.Sequential(*projection_layer).to(self.device).to(torch.float32) | |
def init_proj(self): | |
image_proj_model = ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.clip_proj.config.projection_dim, | |
clip_extra_context_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.float32) | |
return image_proj_model | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor().to(self.device) | |
else: | |
attn_procs[name] = IPAttnProcessor( | |
hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim, | |
scale=1.0, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.float32) | |
unet.set_attn_processor(attn_procs) | |
def get_alpha_clip_embeds(self, pil_image, alpha): | |
clip_image = [self.alpha_clip_image_processor(image) for image in pil_image] | |
clip_image = torch.stack(clip_image).to(self.device, dtype=torch.float32) | |
masks = [self.mask_transform(mask) for mask in alpha] | |
masks = torch.stack(masks).to(self.device, dtype=torch.float32) | |
return self.image_encoder(clip_image, masks) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ipadapter_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ipadapter_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ipadapter_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
def get_complement_of_mask(self, mask): | |
return Image.fromarray((255 - np.array(mask[0])).astype(np.uint8)) | |
def clipaway_projection_block(self, bg_embeds, fg_embeds): | |
projected_vector_magnitude = bg_embeds[0].dot(fg_embeds[0]) / fg_embeds[0].norm() | |
projected_vector = projected_vector_magnitude * fg_embeds / fg_embeds.norm() | |
return bg_embeds - projected_vector | |
def get_focused_embeddings(self, pil_image, alpha, use_projection_block=False): | |
# get focused alpha clip embeds | |
clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) | |
clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)]) | |
# mlp projection | |
projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg) | |
projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg) | |
# ip adapter logic | |
image_prompt_embeds_fg = self.image_proj_model(projected_alpha_clip_embeds_fg) | |
image_prompt_embeds_bg = self.image_proj_model(projected_alpha_clip_embeds_bg) | |
uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg))) | |
if use_projection_block: | |
# clipaway projection block | |
projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg) | |
image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds) | |
return image_prompt_embeds, image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds | |
return image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds | |
def get_ipadapter_embeds(self, pil_image=None, alpha=None): | |
# get focused alpha clip embeds | |
clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) | |
clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)]) | |
# mlp projection | |
projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg) | |
projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg) | |
# clipaway projection block | |
projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg) | |
# ip adapter logic | |
image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds) | |
uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg))) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
pil_image=None, | |
alpha=None, | |
prompt=None, | |
negative_prompt=None, | |
image_prompt_embeds=None, | |
uncond_image_prompt_embeds=None, | |
scale=1.0, | |
num_samples=1, | |
seed=None, | |
guidance_scale=7.5, | |
num_inference_steps=50, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
if image_prompt_embeds is None or uncond_image_prompt_embeds is None: | |
image_prompt_embeds, uncond_image_prompt_embeds= self.get_ipadapter_embeds(pil_image=pil_image, alpha=alpha) | |
else: | |
image_prompt_embeds = image_prompt_embeds.to(self.device) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = get_generator(seed, self.device) | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
image=pil_image, | |
mask_image=alpha, | |
**kwargs, | |
).images | |
return images | |