from alpha_clip.alpha_clip import tokenize as _tokenize, load as _load, available_models as _available_models import re import string dependencies = ["torch", "torchvision", "ftfy", "regex", "tqdm"] # For compatibility (cannot include special characters in function name) model_functions = { model: re.sub(f'[{string.punctuation}]', '_', model) for model in _available_models()} def _create_hub_entrypoint(model): def entrypoint(**kwargs): return _load(model, **kwargs) entrypoint.__doc__ = f"""Loads the {model} CLIP model Parameters ---------- device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The {model} CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ return entrypoint def tokenize(): return _tokenize _entrypoints = {model_functions[model]: _create_hub_entrypoint(model) for model in _available_models()} globals().update(_entrypoints)