""" modified from from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter.py """ import os from typing import List import torch from PIL import Image from torchvision import transforms from transformers import CLIPVisionModelWithProjection import alpha_clip from .utils import get_generator from .attention_processor import AttnProcessor, IPAttnProcessor from safetensors import safe_open from safetensors.torch import load_model import numpy as np import torch.nn as nn class ImageProjModel(torch.nn.Module): """Projection Model of IP-Adapter""" def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): super().__init__() self.generator = None self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class CLIPAway: def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, alpha_clip_path, config, alpha_clip_id="ViT-L/14", device="cuda", num_tokens=4): super().__init__() self.device = device self.ipadapter_image_encoder_path = image_encoder_path self.ipadapter_ckpt = ip_ckpt self.num_tokens = num_tokens self.pipe = sd_pipe.to(self.device) self.set_ip_adapter() alpha_clip_model, alpha_clip_preprocess = alpha_clip.load(alpha_clip_id, alpha_vision_ckpt_pth=alpha_clip_path, device=device) # load image encoder self.image_encoder = alpha_clip_model.visual.to(self.device, dtype=torch.float32) self.clip_proj = CLIPVisionModelWithProjection.from_pretrained(self.ipadapter_image_encoder_path).to( self.device, dtype=torch.float32 ) self.alpha_clip_image_processor = alpha_clip_preprocess # preprocess mask transformation for alpha clip if "@336" in alpha_clip_id: self.mask_transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((336, 336)), # change to (336,336) when using ViT-L/14@336px transforms.Normalize(0.5, 0.26) ]) else: self.mask_transform = transforms.Compose([ transforms.ToTensor(), transforms.Resize((224, 224)), # change to (336,336) when using ViT-L/14@336px transforms.Normalize(0.5, 0.26) ]) # image proj model self.image_proj_model = self.init_proj() self.load_ip_adapter() self.mlp_projection_layer = self.generate_projection_layer(config) print(config.mlp_projection_layer_ckpt_path, type(config.mlp_projection_layer_ckpt_path) ) if config.mlp_projection_layer_ckpt_path is not None: self.load_projection_layer(config.mlp_projection_layer_ckpt_path) def load_projection_layer(self, path): load_model(self.mlp_projection_layer, path) print("Projection layer loaded from", path) def generate_projection_layer(self, config): projection_layer = nn.ModuleList() for i in range(config.number_of_hidden_layers): if i < config.number_of_hidden_layers // 2: projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.alpha_clip_embed_dim)) projection_layer.append(nn.LayerNorm(config.alpha_clip_embed_dim)) elif i == config.number_of_hidden_layers // 2: projection_layer.append(nn.Linear(config.alpha_clip_embed_dim, config.ip_adapter_embed_dim)) projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim)) else: projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim)) projection_layer.append(nn.LayerNorm(config.ip_adapter_embed_dim)) projection_layer.append(nn.GELU()) projection_layer.append(nn.Linear(config.ip_adapter_embed_dim, config.ip_adapter_embed_dim)) return nn.Sequential(*projection_layer).to(self.device).to(torch.float32) def init_proj(self): image_proj_model = ImageProjModel( cross_attention_dim=self.pipe.unet.config.cross_attention_dim, clip_embeddings_dim=self.clip_proj.config.projection_dim, clip_extra_context_tokens=self.num_tokens, ).to(self.device, dtype=torch.float32) return image_proj_model def set_ip_adapter(self): unet = self.pipe.unet attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if cross_attention_dim is None: attn_procs[name] = AttnProcessor().to(self.device) else: attn_procs[name] = IPAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens, ).to(self.device, dtype=torch.float32) unet.set_attn_processor(attn_procs) def get_alpha_clip_embeds(self, pil_image, alpha): clip_image = [self.alpha_clip_image_processor(image) for image in pil_image] clip_image = torch.stack(clip_image).to(self.device, dtype=torch.float32) masks = [self.mask_transform(mask) for mask in alpha] masks = torch.stack(masks).to(self.device, dtype=torch.float32) return self.image_encoder(clip_image, masks) def load_ip_adapter(self): if os.path.splitext(self.ipadapter_ckpt)[-1] == ".safetensors": state_dict = {"image_proj": {}, "ip_adapter": {}} with safe_open(self.ipadapter_ckpt, framework="pt", device="cpu") as f: for key in f.keys(): if key.startswith("image_proj."): state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) elif key.startswith("ip_adapter."): state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) else: state_dict = torch.load(self.ipadapter_ckpt, map_location="cpu") self.image_proj_model.load_state_dict(state_dict["image_proj"]) ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) ip_layers.load_state_dict(state_dict["ip_adapter"]) def get_complement_of_mask(self, mask): return Image.fromarray((255 - np.array(mask[0])).astype(np.uint8)) def clipaway_projection_block(self, bg_embeds, fg_embeds): projected_vector_magnitude = bg_embeds[0].dot(fg_embeds[0]) / fg_embeds[0].norm() projected_vector = projected_vector_magnitude * fg_embeds / fg_embeds.norm() return bg_embeds - projected_vector def get_focused_embeddings(self, pil_image, alpha, use_projection_block=False): # get focused alpha clip embeds clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)]) # mlp projection projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg) projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg) # ip adapter logic image_prompt_embeds_fg = self.image_proj_model(projected_alpha_clip_embeds_fg) image_prompt_embeds_bg = self.image_proj_model(projected_alpha_clip_embeds_bg) uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg))) if use_projection_block: # clipaway projection block projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg) image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds) return image_prompt_embeds, image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds return image_prompt_embeds_fg, image_prompt_embeds_bg, uncond_image_prompt_embeds def get_ipadapter_embeds(self, pil_image=None, alpha=None): # get focused alpha clip embeds clip_image_embeds_fg = self.get_alpha_clip_embeds(pil_image, alpha) clip_image_embeds_bg = self.get_alpha_clip_embeds(pil_image, [self.get_complement_of_mask(alpha)]) # mlp projection projected_alpha_clip_embeds_fg = self.mlp_projection_layer(clip_image_embeds_fg) projected_alpha_clip_embeds_bg = self.mlp_projection_layer(clip_image_embeds_bg) # clipaway projection block projected_alpha_clip_embeds = self.clipaway_projection_block(projected_alpha_clip_embeds_bg, projected_alpha_clip_embeds_fg) # ip adapter logic image_prompt_embeds = self.image_proj_model(projected_alpha_clip_embeds) uncond_image_prompt_embeds = self.image_proj_model(self.mlp_projection_layer(torch.zeros_like(clip_image_embeds_fg))) return image_prompt_embeds, uncond_image_prompt_embeds def set_scale(self, scale): for attn_processor in self.pipe.unet.attn_processors.values(): if isinstance(attn_processor, IPAttnProcessor): attn_processor.scale = scale @torch.inference_mode() def generate( self, pil_image=None, alpha=None, prompt=None, negative_prompt=None, image_prompt_embeds=None, uncond_image_prompt_embeds=None, scale=1.0, num_samples=1, seed=None, guidance_scale=7.5, num_inference_steps=50, **kwargs, ): self.set_scale(scale) num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) if prompt is None: prompt = "best quality, high quality" if negative_prompt is None: negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" if not isinstance(prompt, List): prompt = [prompt] * num_prompts if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * num_prompts if image_prompt_embeds is None or uncond_image_prompt_embeds is None: image_prompt_embeds, uncond_image_prompt_embeds= self.get_ipadapter_embeds(pil_image=pil_image, alpha=alpha) else: image_prompt_embeds = image_prompt_embeds.to(self.device) uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device) bs_embed, seq_len, _ = image_prompt_embeds.shape image_prompt_embeds = image_prompt_embeds.view(bs_embed, seq_len, -1) uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed, seq_len, -1) with torch.inference_mode(): prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt, ) prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) generator = get_generator(seed, self.device) images = self.pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, image=pil_image, mask_image=alpha, **kwargs, ).images return images