Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import math | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
import torch.nn as nn | |
from detectron2.layers import CNNBlockBase, Conv2d, get_norm | |
from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous | |
from .backbone import Backbone | |
from .utils import ( | |
PatchEmbed, | |
add_decomposed_rel_pos, | |
get_abs_pos, | |
window_partition, | |
window_unpartition, | |
) | |
logger = logging.getLogger(__name__) | |
__all__ = ["ViT", "SimpleFeaturePyramid", "get_vit_lr_decay_rate"] | |
class Attention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
# initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
if not rel_pos_zero_init: | |
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) | |
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) | |
def forward(self, x): | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H * W, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# q, k, v with shape (B * nHead, H * W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
class ResBottleneckBlock(CNNBlockBase): | |
""" | |
The standard bottleneck residual block without the last activation layer. | |
It contains 3 conv layers with kernels 1x1, 3x3, 1x1. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
bottleneck_channels, | |
norm="LN", | |
act_layer=nn.GELU, | |
): | |
""" | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
bottleneck_channels (int): number of output channels for the 3x3 | |
"bottleneck" conv layers. | |
norm (str or callable): normalization for all conv layers. | |
See :func:`layers.get_norm` for supported format. | |
act_layer (callable): activation for all conv layers. | |
""" | |
super().__init__(in_channels, out_channels, 1) | |
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) | |
self.norm1 = get_norm(norm, bottleneck_channels) | |
self.act1 = act_layer() | |
self.conv2 = Conv2d( | |
bottleneck_channels, | |
bottleneck_channels, | |
3, | |
padding=1, | |
bias=False, | |
) | |
self.norm2 = get_norm(norm, bottleneck_channels) | |
self.act2 = act_layer() | |
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) | |
self.norm3 = get_norm(norm, out_channels) | |
for layer in [self.conv1, self.conv2, self.conv3]: | |
weight_init.c2_msra_fill(layer) | |
for layer in [self.norm1, self.norm2]: | |
layer.weight.data.fill_(1.0) | |
layer.bias.data.zero_() | |
# zero init last norm layer. | |
self.norm3.weight.data.zero_() | |
self.norm3.bias.data.zero_() | |
def forward(self, x): | |
out = x | |
for layer in self.children(): | |
out = layer(out) | |
out = x + out | |
return out | |
class Block(nn.Module): | |
"""Transformer blocks with support of window attention and residual propagation blocks""" | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
window_size=0, | |
use_residual_block=False, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. If it equals 0, then not | |
use window attention. | |
use_residual_block (bool): If True, use a residual block after the MLP block. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size if window_size == 0 else (window_size, window_size), | |
) | |
from timm.models.layers import DropPath, Mlp | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) | |
self.window_size = window_size | |
self.use_residual_block = use_residual_block | |
if use_residual_block: | |
# Use a residual block with bottleneck channel as dim // 2 | |
self.residual = ResBottleneckBlock( | |
in_channels=dim, | |
out_channels=dim, | |
bottleneck_channels=dim // 2, | |
norm="LN", | |
act_layer=act_layer, | |
) | |
def forward(self, x): | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
if self.use_residual_block: | |
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
return x | |
class ViT(Backbone): | |
""" | |
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. | |
"Exploring Plain Vision Transformer Backbones for Object Detection", | |
https://arxiv.org/abs/2203.16527 | |
""" | |
def __init__( | |
self, | |
img_size=1024, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
use_abs_pos=True, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
window_size=0, | |
window_block_indexes=(), | |
residual_block_indexes=(), | |
use_act_checkpoint=False, | |
pretrain_img_size=224, | |
pretrain_use_cls_token=True, | |
out_feature="last_feat", | |
): | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of ViT. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path_rate (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
window_block_indexes (list): Indexes for blocks using window attention. | |
residual_block_indexes (list): Indexes for blocks using conv propagation. | |
use_act_checkpoint (bool): If True, use activation checkpointing. | |
pretrain_img_size (int): input image size for pretraining models. | |
pretrain_use_cls_token (bool): If True, pretrainig models use class token. | |
out_feature (str): name of the feature from the last block. | |
""" | |
super().__init__() | |
self.pretrain_use_cls_token = pretrain_use_cls_token | |
self.patch_embed = PatchEmbed( | |
kernel_size=(patch_size, patch_size), | |
stride=(patch_size, patch_size), | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
if use_abs_pos: | |
# Initialize absolute positional embedding with pretrain image size. | |
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) | |
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) | |
else: | |
self.pos_embed = None | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
block = Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
window_size=window_size if i in window_block_indexes else 0, | |
use_residual_block=i in residual_block_indexes, | |
input_size=(img_size // patch_size, img_size // patch_size), | |
) | |
if use_act_checkpoint: | |
# TODO: use torch.utils.checkpoint | |
from fairscale.nn.checkpoint import checkpoint_wrapper | |
block = checkpoint_wrapper(block) | |
self.blocks.append(block) | |
self._out_feature_channels = {out_feature: embed_dim} | |
self._out_feature_strides = {out_feature: patch_size} | |
self._out_features = [out_feature] | |
if self.pos_embed is not None: | |
nn.init.trunc_normal_(self.pos_embed, std=0.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + get_abs_pos( | |
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) | |
) | |
for blk in self.blocks: | |
x = blk(x) | |
outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)} | |
return outputs | |
class SimpleFeaturePyramid(Backbone): | |
""" | |
This module implements SimpleFeaturePyramid in :paper:`vitdet`. | |
It creates pyramid features built on top of the input feature map. | |
""" | |
def __init__( | |
self, | |
net, | |
in_feature, | |
out_channels, | |
scale_factors, | |
top_block=None, | |
norm="LN", | |
square_pad=0, | |
): | |
""" | |
Args: | |
net (Backbone): module representing the subnetwork backbone. | |
Must be a subclass of :class:`Backbone`. | |
in_feature (str): names of the input feature maps coming | |
from the net. | |
out_channels (int): number of channels in the output feature maps. | |
scale_factors (list[float]): list of scaling factors to upsample or downsample | |
the input features for creating pyramid features. | |
top_block (nn.Module or None): if provided, an extra operation will | |
be performed on the output of the last (smallest resolution) | |
pyramid output, and the result will extend the result list. The top_block | |
further downsamples the feature map. It must have an attribute | |
"num_levels", meaning the number of extra pyramid levels added by | |
this block, and "in_feature", which is a string representing | |
its input feature (e.g., p5). | |
norm (str): the normalization to use. | |
square_pad (int): If > 0, require input images to be padded to specific square size. | |
""" | |
super(SimpleFeaturePyramid, self).__init__() | |
assert isinstance(net, Backbone) | |
self.scale_factors = scale_factors | |
input_shapes = net.output_shape() | |
strides = [int(input_shapes[in_feature].stride / scale) for scale in scale_factors] | |
_assert_strides_are_log2_contiguous(strides) | |
dim = input_shapes[in_feature].channels | |
self.stages = [] | |
use_bias = norm == "" | |
for idx, scale in enumerate(scale_factors): | |
out_dim = dim | |
if scale == 4.0: | |
layers = [ | |
nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2), | |
get_norm(norm, dim // 2), | |
nn.GELU(), | |
nn.ConvTranspose2d(dim // 2, dim // 4, kernel_size=2, stride=2), | |
] | |
out_dim = dim // 4 | |
elif scale == 2.0: | |
layers = [nn.ConvTranspose2d(dim, dim // 2, kernel_size=2, stride=2)] | |
out_dim = dim // 2 | |
elif scale == 1.0: | |
layers = [] | |
elif scale == 0.5: | |
layers = [nn.MaxPool2d(kernel_size=2, stride=2)] | |
else: | |
raise NotImplementedError(f"scale_factor={scale} is not supported yet.") | |
layers.extend( | |
[ | |
Conv2d( | |
out_dim, | |
out_channels, | |
kernel_size=1, | |
bias=use_bias, | |
norm=get_norm(norm, out_channels), | |
), | |
Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=3, | |
padding=1, | |
bias=use_bias, | |
norm=get_norm(norm, out_channels), | |
), | |
] | |
) | |
layers = nn.Sequential(*layers) | |
stage = int(math.log2(strides[idx])) | |
self.add_module(f"simfp_{stage}", layers) | |
self.stages.append(layers) | |
self.net = net | |
self.in_feature = in_feature | |
self.top_block = top_block | |
# Return feature names are "p<stage>", like ["p2", "p3", ..., "p6"] | |
self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides} | |
# top block output feature maps. | |
if self.top_block is not None: | |
for s in range(stage, stage + self.top_block.num_levels): | |
self._out_feature_strides["p{}".format(s + 1)] = 2 ** (s + 1) | |
self._out_features = list(self._out_feature_strides.keys()) | |
self._out_feature_channels = {k: out_channels for k in self._out_features} | |
self._size_divisibility = strides[-1] | |
self._square_pad = square_pad | |
def padding_constraints(self): | |
return { | |
"size_divisiblity": self._size_divisibility, | |
"square_size": self._square_pad, | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: | |
mapping from feature map name to pyramid feature map tensor | |
in high to low resolution order. Returned feature names follow the FPN | |
convention: "p<stage>", where stage has stride = 2 ** stage e.g., | |
["p2", "p3", ..., "p6"]. | |
""" | |
bottom_up_features = self.net(x) | |
features = bottom_up_features[self.in_feature] | |
results = [] | |
for stage in self.stages: | |
results.append(stage(features)) | |
if self.top_block is not None: | |
if self.top_block.in_feature in bottom_up_features: | |
top_block_in_feature = bottom_up_features[self.top_block.in_feature] | |
else: | |
top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)] | |
results.extend(self.top_block(top_block_in_feature)) | |
assert len(self._out_features) == len(results) | |
return {f: res for f, res in zip(self._out_features, results)} | |
def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12): | |
""" | |
Calculate lr decay rate for different ViT blocks. | |
Args: | |
name (string): parameter name. | |
lr_decay_rate (float): base lr decay rate. | |
num_layers (int): number of ViT blocks. | |
Returns: | |
lr decay rate for the given parameter. | |
""" | |
layer_id = num_layers + 1 | |
if name.startswith("backbone"): | |
if ".pos_embed" in name or ".patch_embed" in name: | |
layer_id = 0 | |
elif ".blocks." in name and ".residual." not in name: | |
layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1 | |
return lr_decay_rate ** (num_layers + 1 - layer_id) | |